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Abstract: We study why Tool-Integrated Reasoning (TIR) makes Large Language Models (LLMs) more
capable. While LLMs integrated with tools like Python code interpreters show great promise, a principled
theory explaining why this paradigm is effective has been missing. This work provides the first formal
proof that TIR fundamentally expands an LLM’s capabilities. We demonstrate that tools enable a strict
expansion of the model’s empirical and feasible support, breaking the capability ceiling of pure-text models
by unlocking problem-solving strategies that are otherwise impossible or intractably verbose. To guide
model behavior without compromising training stability and performance, we also introduce Advantage
Shaping Policy Optimization (ASPO), a novel algorithm that directly modifies the advantage function
to guide the policy behavior. We conduct comprehensive experiments on challenging mathematical
benchmarks, leveraging a Python interpreter as the external tool. Our results show that the TIR model
decisively outperforms its pure-text counterpart on the pass@𝑘 metric. Crucially, this advantage is not
confined to computationally-intensive problems but extends to those requiring significant abstract insight.
We further identify the emergent cognitive patterns that illustrate how models learn to think with tools.
Finally, we report improved tool usage behavior with early code invocation and much more interactive
turns with ASPO. Overall, our work provides the first principled explanation for TIR’s success, shifting
the focus from the mere fact that tools work to why and how they enable more powerful reasoning.

1. Introduction

Large language models (LLMs) have rapidly progressed from fluent generators to general-purpose
problem solvers. Nevertheless, purely text-based reasoning often struggles with tasks that demand
precise calculation, long-horizon search, faithful verification, or access to information beyond a model’s
parametric memory. As a powerful and empirically successful paradigm, Tool-Integrated Reasoning
(TIR) [3, 8] has emerged to address these limitations. Systems equipped with external tools have
consistently and significantly outperformed their pure-text counterparts[9, 10, 18]. However, despite
the widespread recognition of TIR’s effectiveness, a principled account of the fundamental mechanisms,
specifically why and when it helps, is still missing. Existing research has largely focused on demonstrating
empirical success, leaving a crucial gap for a formal framework that can elucidate the origins of its benefits
and define its capability boundaries.

To build such a framework, we first turn to reinforcement learning (RL) [6, 13], the predominant
paradigm for enhancing LLM reasoning. Recent theoretical work has established a critical consensus: in
a pure-text environment, RL is constrained by an “invisible leash” [17]. The learning process is largely
confined to re-weighting probabilities within the base model’s pre-existing trajectories, meaning it cannot
discover fundamentally new reasoning trajectories that lie outside this initial capability [22].

The central thesis of this work is that tool integration fundamentally breaks this barrier. By introducing
deterministic, non-linguistic state transitions via an external tool like a Python interpreter, TIR funda-
mentally expands the model’s exploratory space. We provide the first formal proof that TIR enables a
strict expansion of the model’s empirical support, allowing it to generate correct trajectories that have

Corresponding author: zhongwenxu@tencent.com



Understanding Tool-Integrated Reasoning

negligible or even zero probability in a pure-text paradigm. Beyond theoretical reachability, we introduce
the concept of token efficiency to argue that tools are a practical necessity. For any finite token budget,
there exist algorithmic strategies whose programmatic representations are concise, while their natural-
language simulations are intractably verbose. Consequently, TIR unlocks a vastly larger feasible support
of problem-solving strategies that are simply out of reach for pure-text models under realistic constraints.
Extensions to other tools with informal propositions can be found in Appendix A.

We validate these theoretical claims through a series of experiments focusing on solving mathematical
competition problems with a Python code interpreter. Our pass@𝑘 analysis provides clear evidence that
TIR decisively breaks the capability ceiling of pure-text models. Further investigation, using our proposed
“algorithmic friendliness” metric, reveals that TIR’s benefits are not confined to computationally-intensive
problems but extend to those requiring significant abstract insight. Case studies of the model’s behavior
further illuminate how it leverages this expanded capability, revealing three emergent cognitive patterns:
insight-to-computation transformation, exploration & verification via code, and offloading of complex
calculations.

Finally, in exploring how to further optimize TIR models, we identify a practical algorithmic challenge:
guiding model behavior, such as encouraging earlier tool use, via traditional reward shaping often leads
to training instability in GRPO-like algorithms [3, 12]. To address this, we propose Advantage Shaping
Policy Optimization (ASPO), a novel algorithm that circumvents the reward function and instead applies a
stable, controllable bias directly to the advantage function. Our experiments show that ASPO successfully
guides model behavior with early tool invocation and increased tool usages without compromising task
performance or training stability.

Our contributions are as follows:

1. We provide the first formal theory for why TIR expands an LLM’s capabilities, proving that it enables
a strict expansion of both the feasible and empirical support compared to pure-text models.

2. We propose Advantage Shaping Policy Optimization (ASPO), a novel and stable algorithm for
guiding the behavior of TIR models by directly shaping the advantage function, overcoming the
instability of traditional reward-based methods.

3. We conduct a comprehensive empirical analysis that not only validates our theoretical claims and
algorithm but also provides a mechanistic explanation of TIR’s effectiveness, identifying its universal
benefits across problem types and the emergent cognitive patterns it fosters.

2. Related Work

A significant body of work focuses on developing RL frameworks for strategic tool use. Feng et al. [3]
propose ReTool, an RL-based framework that demonstrates high data efficiency for learning tool use
compared to general-purpose reasoning approaches like Yu et al. [21]. Similarly, Li et al. [8] introduce
ToRL, a method designed to address the challenges of scaling tool-integrated RL to more complex and
demanding scenarios. Bai et al. [1] document methods for effective code-integrated reasoning, where
models generate and execute code to arrive at solutions. This paradigm shares the goal of augmenting
LLM reasoning with external, verifiable Python execution. Focusing on training from base models, Xue
et al. [20] present SimpleTIR, an end-to-end framework for multi-turn TIR that enables stable training
from scratch, a process they refer to as the “Zero” setting.
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While these methods show empirical success, other research investigates the theoretical limitations and
fundamental effects of RL on LLM reasoning. Yue et al. [22] empirically question whether RL truly
incentivizes novel reasoning capacity or merely optimizes the exploitation of the base model’s pre-existing
abilities. Providing a theoretical framework that helps explain such empirical findings, Wu et al. [17]
analyze why RLVR may be constrained by the base model’s initial capabilities. Their “invisible leash”
theory suggests that models may struggle to discover reasoning paths far from their original knowledge
distribution.

Beyond programmatic tools like Python interpreters, another significant line of research focuses on
integrating search engines to provide LLMs with up-to-date, external knowledge through reinforcement
learning. Jin et al. [5] introduce Search-R1, an RL framework where LLMs learn to autonomously
interleave reasoning steps with real-time search engine queries. The model is optimized using a simple
outcome-based reward, and its training is stabilized by masking losses on retrieved tokens, demonstrating
strong performance on multi-turn question-answering tasks. Addressing the challenge of navigating
extreme uncertainty in complex web-based tasks, Li et al. [7] introduce WebSailor, a complete post-
training methodology designed to close the performance gap with proprietary agents, achieve state-
of-the-art results on challenging information-seeking benchmarks like BrowseComp. In this work, we
primarily focus on utilizing Python interpreters to enhance the LLM’s ability to solve complex reasoning
problems in mathematics; similar principles apply for enhancing knowledge-seeking ability and we have
informal discussions in Appendix A.

3. Method

In this section, we formalize the argument that integrating an external computational tool, such as a
code interpreter, fundamentally enhances a Large Language Model’s (LLM) capabilities. We structure our
argument in two parts. First, we provide a formal proof demonstrating that tool integration results in a
strict expansion of the model’s generative support, thereby breaking the “invisible leash” that constrains
purely text-based models [17]. Second, we introduce the concept of token efficiency to argue that even
for problems theoretically solvable by text-based models, tool integration is a practical necessity for
expressing complex algorithms within any feasible token budget.

3.1. Formal Proof: Support Expansion via Tool Integration

We begin by establishing that augmenting an LLM with a deterministic external tool strictly expands its
support, enabling it to generate trajectories that were previously impossible.

3.1.1. Theoretical Context: The Limits of Standard RL

To ground our proof, we first adopt the theoretical framework proposed by Wu et al. [17], which
formalizes the limitations of standard on-policy reinforcement learning [6, 11, 14] on training LLMs.

Definition 3.1 (Support of a Model (adapted from [17])). Let 𝒴 be the space of all possible generative
trajectories. The support of a model with distribution 𝑝(𝑦|𝑥) is the set of all trajectories that can be
generated with a non-zero probability for a given prompt 𝑥:

supp(𝑝) := {𝑦 ∈ 𝒴 | 𝑝(𝑦|𝑥) > 0}
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Definition 3.2 (Empirical Support (from [17])). For a threshold 𝜀 > 0, define the empirical support of 𝑝
as

supp𝜀(𝑝) := {𝑦 ∈ 𝒴 | 𝑝(𝑦|𝑥) ≥ 𝜀}.

This definition is central to understanding a model’s intrinsic capabilities. The following theorem from
Wu et al. [17] establishes a key constraint for models trained with Reinforcement Learning from Verifiable
Rewards (RLVR) [6, 14]:

Theorem 3.3 (Support Preservation under RLVR (from [17])). Let 𝜋𝜃(𝑦|𝑥) be an RLVR-trained policy
distribution initialized from a base model with distribution 𝑞(𝑦|𝑥). For any prompt 𝑥, the support of the
trained policy is a subset of the support of the base model:

supp(𝜋𝜃) ⊆ supp(𝑞)

This implies that if 𝑞(𝑦*|𝑥) = 0 for a correct trajectory 𝑦*, then RLVR can never discover 𝑦*.

Theorem 3.3 formalizes the “invisible leash”: RLVR can only re-weight probabilities within the model’s
pre-existing support. We next show a strictly stronger, practical statement under an empirical-support
view.

3.1.2. Proof of Support Expansion

We consider two types of LLMs in this work. A pure-text model is a standard language model with
distribution 𝑞text that generates tokens exclusively from its vocabulary 𝒱. We compare this to a tool-
integrated model, a system (𝑀,𝒪) with distribution 𝑝TIR, which pairs a language model 𝑀 with a
deterministic external oracle 𝒪 (e.g., a Python interpreter). The generative process for this model
includes not only probabilistic token generation from 𝒱 but also deterministic tool-use transitions. In
such a transition, the model 𝑀 emits a tool call 𝑦call, the oracle executes it, and the resulting output
𝑦out = 𝒪(𝑦call) is deterministically returned as the next state.

Now we present the main theorem and its proof:

Theorem 3.4 (Strict Expansion of Empirical Support via Tool Integration). There exists an 𝜀 > 0 and a
family of problem instances such that

supp𝜀
(︀
𝑞text

)︀
⊂ supp𝜀

(︀
𝑝TIR

)︀
.

Proof. The proof proceeds in two parts. First, we establish the subset relationship (⊆), and second, we
prove the relationship is strict (̸=) by demonstrating the existence of trajectories accessible only to the
tool-integrated model.

Part 1: Proving supp(𝑞text) ⊆ supp(𝑝TIR)

Let 𝑦 be an arbitrary trajectory in the support of the pure-text model, such that 𝑞text(𝑦|𝑥) > 0. The
trajectory 𝑦 consists exclusively of tokens from the vocabulary 𝒱. The tool-integrated model 𝑝TIR can
generate this same trajectory by adopting a policy of never invoking the external oracle 𝒪. Since its
generative capabilities subsume those of 𝑞text, it can assign a non-zero probability to the trajectory 𝑦.
Thus, for any 𝑦 ∈ supp(𝑞text), it follows that 𝑦 ∈ supp(𝑝TIR), establishing that supp(𝑞text) ⊆ supp(𝑝TIR).
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Part 2: Proving Strictness

To prove strictness, we use a constructive approach based on a standard cryptographic primitive: a random
oracle. Let us consider a problem instance where the solution requires computing 𝑦out = 𝐻(𝑥), where 𝐻
is a random oracle. A random oracle is a theoretical black box that, for any new input query, returns an
output chosen uniformly at random from its output space (e.g., {0, 1}𝑚), but deterministically returns
the same output for repeated queries of the same input. This construction is theoretically convenient and
serves as an idealization of practical cryptographic hash functions (e.g., SHA-256). For a model without
access to the oracle, its only strategy to find 𝑦out is to guess it. The probability of correctly guessing a
specific 𝑚-bit string is 2−𝑚.

Now, consider a trajectory 𝑦* = (𝑦*prefix, 𝑦out, 𝑦
*
suffix) that involves computing 𝐻(𝑥). We assume the

underlying language model for both 𝑝TIR and 𝑞text is identical. The tool-integrated model 𝑝TIR can invoke
the oracle to obtain 𝑦out deterministically. In contrast, the pure-text model, 𝑞text, must guess 𝑦out from
an output space of size 2𝑚, succeeding with a probability of only 2−𝑚. Thus, the total probabilities of
producing 𝑦* are directly related:

𝑞text(𝑦
*|𝑥) = 𝑝TIR(𝑦

*|𝑥) · 2−𝑚.

For any non-negligible probability 𝑝TIR(𝑦*|𝑥) and a sufficiently large 𝑚, the corresponding 𝑞text(𝑦*|𝑥)
becomes arbitrarily small. We can therefore always choose an 𝜀 such that 𝑞text(𝑦*|𝑥) < 𝜀 ≤ 𝑝TIR(𝑦

*|𝑥).
So we find that 𝑦* /∈ supp𝜀(𝑞text) while 𝑦* ∈ supp𝜀(𝑝TIR). This establishes strictness.

We have shown that supp(𝑞text) is a strict subset of supp(𝑝TIR). Unlike pure-text models, which are
constrained by Support Preservation (Theorem 3.3), tool integration breaks the “invisible leash” by
introducing new, deterministic state transitions, thereby creating a strict expansion of the model’s
support.

3.2. Token Efficiency and Feasible Support under a Budget

The proof in the previous section establishes that a tool-integrated model can generate trajectories that
are impossible for a pure-text model. This, however, raises a deeper question: can a pure-text model
achieve the same outcomes by simulating the computational process through natural language? While
the resulting trajectories may differ syntactically (𝑦text ̸= 𝑦TIR), they might represent the same underlying
problem-solving strategy. To properly evaluate this, we must move beyond comparing trajectories based
on string identity and instead assess them on their semantic content and efficiency. This motivates our
analysis of token efficiency.

3.2.1. The Concept of Token Efficiency

A key distinction between programmatic and natural language solutions is their token efficiency: the
compactness with which a solution is represented. For any task involving iteration or recursion, a
programmatic representation offers a scalable, abstract description with a near-constant token cost,
e.g., 𝑂(1). In contrast, a natural language trace that simulates the same process must enumerate each
computational step, leading to a token cost that scales with the size of the computation. The tables
below illustrate this stark disparity for common algorithmic patterns: simple iteration (Table 1), large
linear systems (Table 2), dynamic programming (Table 3), and graph search (Table 4). In each case, the
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programmatic solution remains a concise, scalable representation, while the natural language simulation
becomes a verbose, concrete enumeration that is untenable for non-trivial problem sizes.

Table 1: Contrasting Token Efficiency for an Iterative Task (𝑁 → ∞)

Programmatic Approach (Python) Natural Language Reasoning

A symbolic, abstract representation of the compu-
tation. The token cost is constant and independent
of 𝑁 .

A concrete, step-by-step enumeration of the com-
putation. The token cost scales with the magnitude
of 𝑁 .

1 # N can be 10 ,000 ,000 or more
2 for i in range(N):
3 # Perform some check
4 check(i)
5

"Okay, to solve this, I must check every number.
First, for n=1, I perform the check...
Next, for n=2, I perform the check...
Next, for n=3, I perform the check...
...
(This enumeration continues for millions of steps)
...
Finally, for n=10,000,000, I perform the check..."

Token Cost: A few dozen tokens. Scales as 𝑂(1).
This is highly efficient and scalable.

Token Cost: Proportional to 𝑁 . Scales as Ω(𝑁).
This is inefficient and becomes intractable for large
𝑁 , quickly exceeding any feasible context window.

Table 2: Contrasting Token Efficiency for Solving Large Linear Systems

Programmatic Approach (Python) Natural Language Reasoning

A single call to a highly optimized numerical li-
brary solves 𝐴𝑥 = 𝑏. The token cost is constant,
independent of the matrix dimension 𝑛.

A detailed explanation of Gaussian elimination,
requiring a description of each row operation. The
token cost scales with the matrix size.

1 import numpy as np
2 # A is a large n x n matrix ,
3 # e.g., n=1000
4 x = np. linalg .solve(A, b)

"To solve the system, we perform Gaussian elimina-
tion. First, to eliminate the first variable from the
second row, we subtract 𝐴2,1/𝐴1,1 times the first row
from the second row. We must do this for all 𝑛− 1
rows below the first. Next, we use the new second row
to eliminate the second variable from the rows below
it... (This narration continues for 𝑂(𝑛2) elements
and 𝑂(𝑛3) operations)."

Token Cost: A few tokens. Scales as 𝑂(1). Enables
solvingmassive systems within a tiny token budget.

Token Cost: Proportional to the number of ele-
ments in the matrix to sketch. Scales as Ω(𝑛2). A
full narration would scale as Ω(𝑛3).
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3.2.2. Feasible Support under a Token Budget

The fundamental disparity in token efficiency motivates a more practical, budget-aware analysis of a
model’s capabilities, moving beyond theoretical possibilities to what is achievable within operational
constraints. To formalize this, we first define the total token cost of a trajectory, cost(𝑦), as the sum of all
tokens consumed (i.e., prompt, model generation, and tools I/O), which must not exceed the model’s
context budget 𝐵. This allows us to define the set of strategies a model can feasibly execute:

Definition 3.5 (Computational Equivalence Class). Two trajectories, 𝑦1 and 𝑦2, are computationally
equivalent, denoted 𝑦1 ∼ 𝑦2, if they solve the same problem 𝑥 by implementing the same core algorithm.
This relation partitions the space of all trajectories 𝒴 into equivalence classes, where each class [𝑦]
represents a distinct algorithmic “idea” or “strategy”.

Definition 3.6 (Feasible Support under Budget 𝐵). An algorithmic strategy, represented by equivalence
class [𝑦], is within the feasible support of a model𝑀 under token budget 𝐵, denoted [𝑦] ∈ supp𝐵(𝑀), if
and only if there exists at least one trajectory 𝑦′ ∈ [𝑦] such that𝑀(𝑦′|𝑥) > 0 and its token cost(𝑦′) does
not exceed the budget:

∃𝑦′ ∈ [𝑦] s.t. 𝑀(𝑦′|𝑥) > 0 and cost(𝑦′) ≤ 𝐵.

This definition captures a model’s practical ability to realize a problem-solving strategy within operational
constraints. With this formal framework in place, we can now state our central claim regarding the
practical supremacy of tool-integrated models:

Theorem 3.7 (Strict Supremacy of Tool-Integrated Feasible Support). For any non-trivial algorithmic
problem class, there exists a problem size 𝑛𝐵 such that for any token budget 𝐵, the feasible support of a
pure-text model is a strict subset of the feasible support of a tool-integrated model:

supp𝐵(𝑞text) ⊂ supp𝐵(𝑝TIR)

Proof. The proof requires showing both inclusion (⊆) and strictness ( ̸=).

Inclusion (⊆): Any algorithmic strategy that is feasibly executable by a pure-text model within budget 𝐵
is, by definition, also executable by a tool-integrated model that simply abstains from using its tool.

Strictness ( ̸=): Wemust show there exists an algorithmic class [𝑦𝐴] in supp𝐵(𝑝TIR) but not in supp𝐵(𝑞text).
This follows directly from the divergent scaling properties of natural language versus programmatic
representations, as illustrated in Tables 1-4. For any algorithm whose pure-text simulation cost scales
with problem size 𝑛 (e.g., Ω(𝑛), Ω(𝑉 + 𝐸)), we can choose a size 𝑛𝐵 such that the cost exceeds any
finite budget 𝐵. The programmatic representation, costing 𝑂(1), remains within budget. Thus, for a
sufficiently large problem size, the corresponding algorithmic classes are in the feasible support of 𝑝TIR
but not 𝑞text, proving strict inclusion.

The theorem crystallizes the practical implications of token efficiency. It establishes that for any finite
computational budget, there is a vast class of algorithmic strategies that pure-text models are funda-
mentally incapable of executing. Not because the solution is unknowable, but because its expression in
natural language is too verbose. Tool integration is therefore not merely a convenience; it is a necessity
for expanding the set of algorithmic approaches that LLMs can feasibly deploy. This provides a strong
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argument for a paradigm where LLMs act as reasoning engines that delegate complex computational
tasks to specialized, efficient tools.

3.3. Algorithmic Improvement: Advantage Shaping for Early Code Invocation

The TIR models often default to a conservative strategy: completing the majority of their abstract
reasoning via text before invoking the code interpreter for the final-step calculation or verification. This
overlooks a potentially more powerful paradigm where the interpreter is used as an exploratory tool
throughout the reasoning process. We hypothesize that encouraging the model to invoke code earlier
could foster a more dynamic, flexible, and hypothesis-driven reasoning style, potentially unlocking novel
problem-solving strategies.

Our initial, most direct approach was to introduce an early-code reward directly into the reward function.
For each response 𝑖 that is both correct and code-containing in a group of samples, we added a reward
term 𝑟′𝑖 that penalizes later code invocation:

𝑅𝑖 = 1 + 𝑟′𝑖 where 𝑟′𝑖 = 𝛿 · clip
(︂
𝑝𝑖 −mean(p)
std(p)

,−𝑐, 𝑐

)︂
. (1)

However, this seemingly innocuous modification proved to be highly destabilizing during training (see
experimental details in Section 4.5 and Figure 5 (a)). In algorithms like GRPO that rely on group
normalized advantage, this design has a critical flaw. In the common scenario where all samples in a
group are correct, the primary reward signal (the constant ‘1’) is entirely eliminated by the normalization.
The advantage calculation then becomes:

𝐴𝑖 =
𝑅𝑖 −mean(R)

std(R)
=

(1 + 𝑟′𝑖)− (1 +mean(r′))
std(r′)

=
𝑟′𝑖 −mean(r′)
std(r′)

This leads to a catastrophic outcome: (1) the primary signal about answer correctness disappears, (2)
the auxiliary signal 𝑟′𝑖 is amplified to the same magnitude as the original primary signal, and (3) due to
the nature of standardization, approximately half of these correct responses receive a negative advantage
and are thus heavily penalized, solely because their code invocation is later than the group’s average.

To circumvent the distorting effects of reward normalization, we developed a more robust method
that we term Advantage Shaping Policy Optimization (ASPO). Instead of manipulating the reward, we
directly modify the final advantage value after the standard correctness-based advantage 𝐴correct has been
calculated. For any response 𝑖 that is both correct and contains code, we compute the new advantage 𝐴𝑖

as follows:
𝐴𝑖 = 𝐴correct,𝑖 + clip

(︂
𝛿 · 𝑝𝑖 −mean(p)

mean(L)
, −𝑘 ·𝐴correct,𝑖, 𝑘 ·𝐴correct,𝑖

)︂
, (2)

where p and L are the sets of first code invocation positions and total response lengths for all correct,
code-containing responses within the group. Furthermore, 𝛿 is a negative coefficient to encourage early
code invocation, and 𝑘 is a clipping hyperparameter that bounds the magnitude of auxiliary advantage
within a proportion of the basic advantage of correctness.

This formulation has several key merits, primarily by circumventing the uncontrollable effects of advantage
normalization inherent to reward-based modifications. First, it addresses a critical flaw in the reward-
based approach: the inability to guarantee a positive advantage for all correct answers. After adding
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the auxiliary reward, a correct response’s total reward could fall below the group average, leading to
a negative GRPO normalized advantage, which effectively punishes a correct solution. Second, the
GRPO normalization process itself introduces uncontrollable volatility: the std(R) in the denominator
unpredictably scales the auxiliary signal, making its influence inconsistent across different groups.

Our ASPO algorithm resolves both issues. By applying a clipped bias directly to 𝐴correct, we ensure the
final advantage remains positive and that the early-code incentive is always a subordinate nudge, never
overwhelming the primary objective of correctness. Furthermore, this approach bypasses the volatile
scaling effect of std(R) entirely. Finally, the choice to normalize the code invocation position by the mean
response length mean(L) rather than the standard deviation of positions std(p) is deliberate. The latter
is unstable: when invocation positions in a group are tightly clustered, a small std(p) would excessively
amplify the signal, whereas a more stable denominator like mean(L) is consistent and meaningful. This
method allows us to stably and effectively encourage early code invocation, the empirical results of which
are detailed in Section 4.5.

In essence, ASPO provides a general and robust framework for guiding a model’s behavior towards
desired styles or properties without compromising the primary learning objective (e.g., accuracy). By
directly manipulating the advantage values, ASPO avoids the instabilities that can arise from altering the
reward function, particularly in GRPO-like algorithms that rely on reward normalization. This method
ensures that the incentive for the desired behavior (in this case, earlier code invocation) acts as a stable
adjustment. The core principles of ASPO could be readily adapted to encourage other desirable behaviors
in a variety of scenarios, offering a reliable approach to shape model conduct while preserving training
stability and overall task performance.

4. Experiments

4.1. Experimental Setup
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Figure 1: The (a) training and (b) testing accuracy of the TIR and pure-text RL on Qwen3-8B model.
The AIME25 accuracy (b) is the average of 16 responses.

Model and Datasets. All experiments are based on the Qwen3-8B model [16]. For our training data, we
randomly sample 10,000 English problems from the DAPO dataset [21] due to limited computational
resources. Since our aim is to fundamentally understand the mechanisms of TIR rather than to improve
absolute accuracy of benchmarks, this dataset is sufficient for our purpose, in contrast to the extensive
training datasets used in other literature [3, 21]. Our primary evaluation benchmarks are AIME24,
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AIME25, and a challenging subset of the Omni-MATH dataset [4]. For the latter, due to the large size
of the dataset, we curated the 512 most difficult problems that are amenable to reliable, rule-based
evaluation, which we denote as Omni-MATH-512.

Training Protocol. We train two main models for comparison: our proposed TIR model, which can
execute code to assist in its reasoning process, and a pure-text RL model as a baseline (as shown in
Figure 1). Both models are trained for 3 epochs using the DAPO algorithm [21], a variant of GRPO [14].
During training, we use a rollout batch size of 96 problems, with 8 responses sampled per problem, a
maximum response length of 16,384 tokens, and a sampling temperature of 1.0 to encourage exploration.

Evaluation Protocol. For evaluations, we set the sampling temperature to 0.6 and maximum response
length to 16,384 tokens unless otherwise specified.

4.2. Pass@𝐾 Experiments: TIR Breaks the Capability Ceiling

To empirically test our theoretical claims, this section investigates whether TIR can overcome the capability
ceiling observed in pure-text models [17, 22]. Similar to Yue et al. [22] and others, we use the pass@𝑘
metric, with low-variance estimation from Chen et al. [2], as it provides a robust measure of a model’s
underlying problem-solving potential.

Figure 2 presents the macroscopic evidence from our experiments. It plots the pass@𝑘 curves for both the
TIR model (RL trained) and the pure-text baseline (Qwen3 8B) across our three evaluation benchmarks,
with the max 𝑘 of 256. The results are unequivocal: on AIME24, AIME25, and Omni-MATH-512, the
TIR model’s performance curve is consistently and significantly higher than that of the pure-text model.
Crucially, we observe no intersection between the curves, even as 𝑘 increases to 256. This stands in stark
contrast to previous findings where RL-trained text models, while improving pass@1, often do so at the
cost of the broader capability envelope, eventually being surpassed by the base model at high values of
𝑘 [22]. Our results show that TIR does not suffer from this trade-off; it elevates the entire pass@𝑘 curve.

To further understand this performance gain at a per-problem level, we visualize the “flow of solvability”
on the Omni-MATH-512 dataset in Figure 3. This Sankey diagram illustrates how the solvability status
of individual problems changes when moving from the pure-text model to the TIR model (samples
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Figure 2: Pass@𝑘 curves for the TIR (RL trained) and pure-text models (Qwen3 8B) across three bench-
marks: (a) AIME24, (b) AIME25, and (c) Omni-MATH-512. The detailed numerical data corresponding
to this figure are provided in the Appendix D.
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Flow of Problem Solvability
Pure-text TIR
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68.4%
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18.0%
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82.0%

Jointly Unsolved 16.2%

Expansion 15.4%

Shrinkage 1.8%

Preservation 66.6%

Figure 3: The flow of problem solvability on Omni-MATH-512 when transitioning from the pure-text
model to the TIR model, evaluated at 𝑘 = 256.

𝑘 = 256 responses per problem). We categorize the problems into four distinct groups as [17]: Capability
Expansion: Problems the pure-text model fails to solve but the TIR model succeeds on; Capability
Preservation: Problems solved by both models; Capability Shrinkage: Problems solved by the pure-text
model but not by the TIR model; Jointly Unsolved: Problems that neither model can solve. The diagram
reveals a massive net gain in problem-solving capability. The Capability Expansion set contains 15.4%
problems, whereas the Capability Shrinkage set contains only 1.8%. This provides direct empirical
validation for our theoretical argument in Section 3, demonstrating that TIR facilitates a practically
significant expansion of the model’s effective support.

In summary, both macroscopic pass@𝑘 analysis and microscopic problem-level tracking confirm that
tool-integrated reasoning decisively breaks the capability ceiling of its pure-text counterpart, enabling
the model to solve a wide range of problems that were previously out of its reach.

4.3. Benefits of TIR Extend Beyond Computationally-Intensive Problems

A crucial question arises from our initial findings: is the observed capability expansion of TIR merely an
artifact of solving problems that are inherently algorithmic? The most direct yet naive interpretation of
TIR’s success is that it simply offloads complex arithmetic, acting as a superior calculator. However, a
more nuanced counterargument posits that TIR’s effectiveness, while beyond simple calculation, is still
confined to problems whose structure can be directly mapped to a known algorithm such as exhaustive
search in combinatorics. This perspective suggests that TIR improves the model’s capability on problems
that are computationally-intensive or inherently algorithmic, but offers little advantage when the problem
is highly abstract.

To rigorously test our hypothesis, we first introduce the concept of “algorithmic friendliness”, which
is defined as a measure of how reliant a problem’s solution is on standard computation versus deep
mathematical insight. To operationalize this concept, we developed a detailed five-point rubric for
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Figure 4: (a)-(e) Pass@k curves for the TIR and pure-text models, grouped by problem algo friendliness.
(f) The distribution of algo friendliness scores across the Omni-MATH-512 dataset. The problems are
categorized into five groups based on their algo friendliness scores: 1.0–1.5 (G1), 2.0–2.5 (G2), 3.0–3.5
(G3), 4.0–4.5 (G4), and 5.0 (G5).

classifying problems, as presented in Appendix C. This scale ranges from a score of 1 for problems that are
fundamentally abstract and non-computational, to 5 for those solvable by a direct application of a textbook
algorithm. We then applied this rubric to classify each problem in the Omni-MATH-512 dataset. This
classification was performed by providing both the problem statement and its solution idea to the Gemini
2.5 Pro API [15], which then assigned a score based on the rubric. The resulting distribution of problem
types, shown in Figure 4(f), reveals a crucial characteristic of the dataset. Contrary to being biased
towards highly algorithmic problems, the distribution’s peak is concentrated in the medium friendliness
categories (scores 2, 3 and 4). This confirms that Omni-MATH-512 serves as a fair and challenging
testbed for our analysis, not one skewed towards problems with simple computational solutions.

Figure 4(a)-(e) presents our core findings. It displays the pass@𝑘 curves for the TIR and pure-text models,
grouped by the algo friendliness of the problems. As expected, the performance gap between the two
models is most pronounced for problems with high friendliness (scores 4.0-5.0), where TIR’s ability to
execute algorithms directly provides a massive advantage (Figure 4(a),(b)). The most critical finding,
however, comes from the lowest friendliness group (scores 1.0-2.5). Even for these problems, which
depend heavily on abstract reasoning and are ill-suited to direct computation, the TIR model maintains
a significant and consistent performance advantage over the pure-text baseline, outperforming it by
approximately 9% in pass@256 accuracy (Figure 4(d),(e)).

This result demonstrates that the benefits of TIR are not confined to easily programmable problems. The
tool serves a more profound purpose than acting as a simple calculator or a direct algorithm-implementer.
It suggests that the model is leveraging the code interpreter in more complex and sophisticated ways,
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which we will investigate in the next subsection.

4.4. Case Analysis: Emergent Cognitive Patterns of Tool Integration

The quantitative results of the previous sections demonstrate that TIR is universally effective, but they
do not fully explain how. If the model’s advantage is not limited to algorithmically amenable problems,
how exactly is it leveraging the code interpreter to solve problems requiring abstract insight? Through
qualitative analysis of model outputs, we have identified three distinct and recurring patterns of code
utilization that answer this question.

Pattern 1: Insight-to-computation transformation. In this primary pattern, the model’s first step is not
to code, but to reason. It engages in non-trivial, text-based analysis to deconstruct a complex problem,
applying mathematical insights to transform it into a state that is amenable to a programmatic solution.
The code interpreter is then invoked to execute a genuine algorithm (such as search, enumeration, or
DP) that efficiently solves this newly formulated sub-problem under a limited computational resource.
Unlike straightforward sequential calculations one might perform with a calculator, these algorithms
often possess complex control flows (e.g., loops, recursion) that are challenging for a language model to
emulate or follow step-by-step.

For instance, as shown in Table 7, the model first uses mathematical reasoning to derive a transcendental
equation from the abstract geometric problem. It then employs code to iterate the entire parameter
space of (𝑚,𝑛) pairs, using the Intermediate Value Theorem as a numerical method to efficiently detect
whether a solution exists for each pair.

Pattern 2: Exploration and verification via code. For problems where the solution path is not imme-
diately obvious, the model utilizes the code interpreter as an interactive sandbox for exploration and
hypothesis testing. Instead of committing to a single line of reasoning, it formulates conjectures and
writes short code snippets to test them, observe their outcomes, and iteratively refine its strategy based
on the feedback. This pattern is particularly prevalent in problems with low algorithmic amenability,
where it allows the model to build confidence and discover insights through empirical experimentation.

Table 8 provides a clear instance of this exploratory behavior. The model first derives a candidate value
of 𝜆 =

√
3 from a simple case, then uses the code interpreter to numerically explore more different

scenarios. The feedbacks validate its initial hypothesis and pivot its strategy from further exploration
toward constructing a rigorous algebraic proof.

These first two patterns represent a fundamental departure from pure-text reasoning. As we established
in Section 3, they constitute entirely new Computational Equivalence Classes, new strategies for solving
problems. While a pure-text model might theoretically be able to simulate these processes, the token cost
of doing so would be astronomical. The step-by-step, trial-and-error nature of the exploratory pattern, in
particular, would lead to a blow-up in token length. Therefore, these strategies lie far outside the Feasible
Support under Budget 𝐵 for any practical context window, making them uniquely accessible to the TIR
paradigm.

Pattern 3: Offloading complex calculation. This is the most direct pattern of tool use, where the model
has a clear, linear path to the solution but delegates complex or tedious calculations to the interpreter. This
usage aligns with the naive view of TIR as a “calculator”, but its importance should not be understated.
By offloading these steps, the model minimizes the risk of unforced computational errors that frequently
derail long chains of pure-text thought, thereby preserving the integrity of the overall reasoning process.
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A representative example is shown in Table 9. Here, the model first performs the text-based reasoning to
establish a solution path, then uses the interpreter as a precision tool to execute the series of intricate
vector and algebraic computations that would be highly prone to manual error.

In conclusion, these emergent patterns reveal a sophisticated interplay between the LLM’s reasoning
capabilities and the code interpreter’s computational power. The model is not merely using a tool; it
is thinking with tools. This signifies a fundamental shift in strategy: rather than simply delegating
calculations from an otherwise unchanged, text-based line of thought, the model learns to generate novel
problem-solving approaches that are intrinsically synergistic with the interpreter. It formulates plans that
leverage programmatic strengths like iteration and DP from the outset, developing new “Computational
Equivalence Classes” that were previously inaccessible. Such dynamic and flexible code invocation enables
the TIR model to break the capability ceiling of its pure-text counterpart.

4.5. Empirical Analysis of ASPO for Early Code Invocation

In this section, we empirically validate our ASPO algorithm, designed to encourage earlier code invocation.
We aim to answer two primary questions: (1) Does this method maintain training stability and final task
performance, unlike the naive reward-based approach? (2) Does it effectively and controllably alter the
model’s tool-use behavior as intended? We test our baseline model against the unstable reward-based
approach and two variants of our ASPO algorithm: a conservative setting (𝛿 = −2.0, 𝑘 = 0.7) and an
aggressive setting (𝛿 = −2.5, 𝑘 = 0.9).
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Figure 5: The (a) training and (b) testing accuracy of the baseline and ASPO algorithm.

Stability and performance remain uncompromised. Figure 5 provides a clear validation of our method’s
stability. As mentioned in our analysis in Section 3, the naive reward-based approach quickly becomes
unstable, causing the training reward to collapse (Figure 5(a)). In stark contrast, the training curves for our
ASPO algorithm with both conservative and aggressive settings remain stable and almost perfectly aligned
with the baseline. Furthermore, this stability does not come at the cost of final performance. Figure 5(b)
shows that the final “avg@16” accuracy on AIME25 for both variants is statistically indistinguishable from
the baseline. This is a crucial result: our method successfully avoids the pitfalls of reward modification,
ensuring that the primary goal of solving the problem correctly is not sacrificed.

A significant shift in cognitive behavior. Having established the method’s safety, we now demonstrate
its effectiveness in reshaping the model’s reasoning strategy. Figure 6 presents a comprehensive analysis
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of the model’s code-use behavior on AIME25, averaged over 16 responses per question. The results show
a dramatic and targeted shift. The most significant change is in the code invocation timing (Figure 6(b)),
where the average position of the first code call is brought forward from 4,000 tokens in the baseline
down to 1,000 tokens. Concurrently, the model becomes a much more active tool user: the average
number of code rounds per problem more than doubles, from 1.3 to 3.3 (Figure 6(e)), and the code ratio
approaches nearly 100%, indicating that using the interpreter becomes a default part of the model’s
process (Figure 6(c)). This behavioral shift is starkly evident when examining the distribution of responses
for a single challenging problem. For instance, on Q30 of the AIME25, the baseline model exhibited
reluctant and inconsistent tool use: out of 16 independent responses, four failed to make a single code call,
and the median number of invocations was just 2. In stark contrast, our ASPO-trained model integrated
the tool as an indispensable part of its problem-solving process. It invoked the code in all 16 responses
for the same problem, and the median number of tool calls increased from 2 to 13. More significantly, a
quarter of the responses demonstrated highly iterative behavior, making more than 20 tool calls, which is
entirely absent in the GRPO-trained baseline. This shows a clear transformation from a conservative,
late-stage “calculator” usage pattern to an early, iterative, and exploratory “interactive partner” paradigm.

Controllability and absence of reward hacking. Importantly, this behavioral shift is achieved without
inducing reward hacking. We manually inspected a large number of samples and found no instances of
the model inserting trivial or meaningless code early in its response merely to satisfy the incentive. The
stability of the final task accuracy (Figure 5(b)) and the code pass ratio (Figure 6(d)) further substantiates
this. Finally, the difference between the conservative and aggressive settings demonstrates that the degree
of behavioral change is tunable via the hyperparameters 𝛿 and 𝑘.
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Figure 6: Evaluation results of the baseline and ASPO algorithm on AIME25. (a) Response length, (b)
code invocation timing, (c) code ratio, (d) code pass ratio, (e) code rounds and (f) code lines.
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5. Conclusions

In this work, we presented a comprehensive investigation into the foundational mechanisms of Tool-
Integrated Reasoning (TIR). We moved beyond empirical demonstrations to establish a formal theoretical
framework explaining its effectiveness. Our core theoretical contribution is the proof that TIR enables a
strict expansion of both the empirical and feasible support of an LLM, breaking the “invisible leash” that
constrains pure-text models and making complex algorithmic strategies practically achievable within
finite token budgets. On the algorithmic front, we identified the instability of reward shaping for guiding
model behavior in TIR systems and proposed Advantage Shaping Policy Optimization (ASPO), a stable
and effective alternative that directly modifies the advantage function.

Our experiments provided strong empirical validation for these claims. We demonstrated that TIR model
equipped with a Python interpreter decisively surpasses the performance of pure-text models across
challenging mathematical reasoning benchmarks. Our analysis, using a novel “algorithmic friendliness”
metric, revealed that TIR’s benefits are universal, extending even to problems that are highly abstract and
less amenable to direct computation. Qualitative analysis further uncovered the sophisticated, emergent
cognitive patterns that arise from the synergy between LLM reasoning and tool execution.

Ultimately, our findings advocate for a paradigm shift: viewing LLMs not as monolithic problem-solvers,
but as core reasoning engines that intelligently delegate computational tasks to specialized, efficient
tools. The principles and methods developed here, particularly ASPO, open avenues for more nuanced
and stable control over the behavior of powerful tool-integrated agents.
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A. Extensions to Other Tools and Interactions with Environments

Our arguments in Sections 3.1.2 and 3.2 extend beyond Python to a broad family of external tools and
interactive settings. At a high level, any interface that (i) affords state transitions not expressible by
next-token sampling alone and/or (ii) delivers high information per token of I/O will both expand support
(Section 3.1.2) and strictly enlarge feasible support under a token budget (Section 3.2).

Search and Retrieval Agents. Consider web search, retrieval APIs, or domain databases (e.g., scholarly
indices, code search). Let an external retriever implement a (possibly stochastic) mapping ℛ : (𝑞, 𝑠) ↦→ 𝑟,
where 𝑞 is a query issued by the LLM and 𝑠 is the (latent) world/index state at the time of the call. Even
whenℛ is not perfectly deterministic, the trajectory that includes the returned snippet 𝑟 is unreachable for
a pure-text model unless it guesses the salient facts in 𝑟 token-by-token. This mirrors the random-oracle
argument in Theorem 3.7: as the entropy of 𝑟 conditioned on (𝑞, 𝑥) grows, the probability that a pure-text
model reproduces 𝑟 by chance decays exponentially, while a tool-augmented model obtains 𝑟 via a single
call. Hence support expands, and under any fixed budget 𝐵 the feasible set also strictly expands once the
text-only paraphrase of 𝑟 would exceed 𝐵.

Checkers, Verifiers, and Program Runners. Beyond “heavy” computation, many tools act as verifiers:
unit tests, symbolic algebra checkers, SAT/SMT solvers, theorem provers, type checkers, or even a Python
REPL used only to validate a candidate answer. Such tools add deterministic pruning transitions to the
trajectory graph: incorrect branches are cut immediately with 𝑂(1) tokens. This reduces the exploration
burden under RLVR-style training and enlarges the set of practically reachable strategies under a budget.

Stateful External Memory. Tools can expose memory larger and more persistent than the model’s
context: key–value caches, external scratchpads, vector stores, or file systems. Each call updates an
external state 𝑚𝑡+1 = 𝑈(𝑚𝑡, 𝑎𝑡) and reads views 𝑣𝑡 = 𝑉 (𝑚𝑡) at 𝑂(1) token cost. Strategies that require
memory |𝑚| ≫ 𝐵 are impossible to realize faithfully in pure text (which must inline 𝑚), but become
feasible when memory lives outside the context window.

Proposition A.1 (Informal; External State as Unbounded Scratchpad). Suppose an algorithm requires
Ω(𝑛) writable memory cells for problem size 𝑛. If a tool exposes these cells with per-step I/O 𝑂(1), then for
sufficiently large 𝑛, the algorithm’s equivalence class lies in supp𝐵(𝑝TIR) but not in supp𝐵(𝑞text) for any fixed
𝐵.

Embodied and Interactive Environments. When the LLM acts in an MDP or game environment [19],
the environment transition 𝑠𝑡+1 = 𝐸(𝑠𝑡, 𝑎𝑡) is itself an external oracle. Our earlier support-expansion
argument applies verbatim: trajectories that include specific environment observations or states are
unreachable by text-only generation unless they are guessed token-by-token. Token-efficiency arguments
also lift: environment interactions can realize long-horizon plans with summarized textual traces, whereas
a pure-text simulation would require enumerating each counterfactual step.

Noisy or Non-Deterministic Tools. Stochastic returns (e.g., fluctuating search rankings) do not invalidate
support expansion. What matters is the existence of some positive-probability outputs with substantial
conditional entropy that are infeasible to reproduce via text within budget. In other words, determinism
is a convenience, not a necessity, for our conclusions.

Composing Multiple Tools. Real agents chain retrieval, computation, verification, and environment
actions. Composition behaves monotonically:
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Proposition A.2 (Informal; Monotone Closure under Composition). Let 𝒯1, . . . , 𝒯𝑘 be tools with per-call
costs that sum to at most 𝐵. If each 𝒯𝑖 individually yields a strict feasible-support gain for some subproblem
family at size 𝑛𝑖, then there exist composite tasks for which the sequential (or branched) use of {𝒯𝑖} yields a
strict feasible-support gain over any pure-text policy at the same total budget.

Takeaway. “Python” is merely one instantiation of a broader principle, our extensions unify code
execution, search, verification, memory, and embodied interaction under the same analytical lens.
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B. More Examples on Token Efficiency

Table 3: Contrasting Token Efficiency for a Dynamic Programming Task (Fibonacci Sequence)

Programmatic Approach (Python) Natural Language Reasoning

A compact representation of the recurrence rela-
tion, with a token cost independent of the input
integer 𝑁 .

A verbose, step-by-step calculation of every sub-
problem’s solution, with a token cost that grows
with 𝑁 .

1 memo = {0: 0, 1: 1}
2 def fib(n):
3 if n in memo: return memo[n]
4 memo[n] = fib(n -1) + fib(n -2)
5 return memo[n]

"To get fib(5), I need fib(4) and fib(3). Fib(2) is
fib(1)+fib(0) = 1+0 = 1. Fib(3) is fib(2)+fib(1)
= 1+1 = 2. Fib(4) is fib(3)+fib(2) = 3+1 = 4.
So, fib(5) is fib(4)+fib(3) = 4+2 = 6... Wait, let
me recheck. fib(4) is 3+2=5. No, fib(4) is 2+1=3.
Okay, so fib(5) is 3+2=5."

Token Cost: 𝑂(1) Token Cost: Ω(𝑁)

Table 4: Contrasting Token Efficiency for Search Algorithms

Programmatic Approach (Python) Natural Language Reasoning

An abstract procedure for state-space traversal, us-
ing data structures like a queue and a set.

A full, step-by-step narration of the entire explo-
ration process, including every node visited and
every state change of the queue.

1 from collections import deque
2

3 def bfs(graph , start_node ):
4 queue = deque ([ start_node ])
5 visited = { start_node }
6 while queue:
7 node = queue. popleft ()
8 # Process node
9 for neighbor in graph[node ]:
10 if neighbor not in visited :
11 visited .add( neighbor )
12 queue. append ( neighbor )
13

"I start at node ’A’. Queue is [’A’], visited is ’A’. I pop
’A’. Its neighbors are ’B’, ’C’. Queue is now [’B’, ’C’],
visited is ’A’,’B’,’C’. I pop ’B’. Its neighbor is ’D’. Queue
is now [’C’, ’D’], visited is ’A’,’B’,’C’,’D’. I pop ’C’..."
(and so on)

Token Cost: Constant cost for the algorithm’s def-
inition. Scales as 𝑂(1).

Token Cost: Proportional to the number of vertices
and edges, 𝑉 + 𝐸. Scales as Ω(𝑉 + 𝐸).
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C. Rubric for Algorithmic Friendliness

Table 5 shows the rubric we use for Gemini Pro APIs [15] to classify the math problems.

Table 5: Rubric for assessing the “algorithmic friendliness” of problems.

Score Level Description Required Insight

5 Very High (Direct
Application)

The problem is a textbook example for
a standard algorithm (e.g., backtracking).
The problem statement itself almost serves
as the specification. Almost nomathemat-
ical insight is needed.

None beyond basic
arithmetic.

4 High (Minor Insight) An algorithm provides a clear advantage,
but requires a standard, well-known
mathematical identity or simple trans-
formation to be applied. The mathemati-
cal hurdle is low.

Recalling and applying
a common formula or
theorem.

3 Medium (Significant
Insight)

A computational solution is effective, but
only after applying a significant mathe-
matical insight or performing complex
problem modeling. The difficulty is sub-
stantial.

A creative, problem-
specific trick or a com-
plex modeling effort.

2 Low (Impractical Al-
gorithm)

An algorithm is theoretically possible but
highly impractical (enormous search space,
precision issues). The algorithmic opti-
mizations are equivalent in difficulty to
the mathematical solution.

Insights needed are es-
sentially the mathemat-
ical solution itself.

1 Very Low (Non-
computational)

The problem is fundamentally abstract
and cannot be solved by computation (e.g.,
requires a formal proof, deals with un-
countable sets).

N/A.
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D. Pass@𝑘 Data

Table 6 shows the detailed pass@𝑘 results for the TIR and pure-text models across the three benchmarks,
evaluated with the max sample size of 256.

Table 6: Pass@𝑘 results for the TIR model and the pure text model

k AIME24 AIME25 Omni-MATH-512

TIR Pure Text TIR Pure Text TIR Pure Text

1 0.7829 0.6331 0.6841 0.5184 0.5128 0.3585
2 0.8408 0.7184 0.7818 0.6065 0.5885 0.4208
4 0.8632 0.7703 0.8395 0.6730 0.6437 0.4707
8 0.8825 0.8050 0.8792 0.7262 0.6869 0.5153
16 0.9024 0.8312 0.9117 0.7613 0.7232 0.5570
32 0.9173 0.8496 0.9339 0.7810 0.7545 0.5942
64 0.9312 0.8645 0.9503 0.7979 0.7802 0.6271
128 0.9480 0.8813 0.9625 0.8250 0.8018 0.6575
256 0.9667 0.9000 0.9667 0.8667 0.8203 0.6836
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E. Capability Expansion and Shrinkage

Flow of Problem Solvability
Pure-text TIR

Unsolved 
Share: 31.6%

Solved Prob. (0, 0.25]
Share: 25.8%

Solved Prob. (0.25, 0.5]
Share: 5.9%

Solved Prob. (0.5, 0.75]
Share: 8.2%

Solved Prob. (0.75, 1]
Share: 28.5%

Unsolved 
Share: 18.0%

Solved Prob. (0, 0.25]
Share: 20.9%

Solved Prob. (0.25, 0.5]
Share: 8.8%

Solved Prob. (0.5, 0.75]
Share: 8.6%

Solved Prob. (0.75, 1]
Share: 43.8%

Figure 7: The detailed flow of problem solvability on Omni-MATH-512 when transitioning from the
pure-text model to the TIR model. The solved probability of each problem is evaluated at 𝑘 = 256.
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F. Emergent Cognitive Patterns of Tool Integration

[Question]
Let 𝑎 ̸= 𝑏 be positive real numbers and 𝑚,𝑛 be positive integers. An 𝑚+ 𝑛-gon 𝑃 has the property that 𝑚 sides have length
𝑎 and 𝑛 sides have length 𝑏. Further suppose that 𝑃 can be inscribed in a circle of radius 𝑎 + 𝑏. Compute the number of
ordered pairs (𝑚,𝑛), with 𝑚,𝑛 ≤ 100, for which such a polygon 𝑃 exists for some distinct values of 𝑎 and 𝑏.

[Response]
Okay, let’s try to tackle this problem step by step.
. . .
We need to find the number of ordered pairs (𝑚,𝑛) where 𝑚,𝑛 ≤ 100 such that this equation has solutions for 𝑎 and 𝑏 with
𝑎 ̸= 𝑏. . . . So, substituting into the equation:

𝑚 · arcsin(𝑥/2) + 𝑛 · arcsin((1− 𝑥)/2) = 𝜋

. . .
But how can I find all such (𝑚,𝑛) pairs? Since 𝑚 and 𝑛 are up to 100, perhaps we can write a program to check for each
possible pair (𝑚,𝑛) whether there exists an 𝑥 in (0, 1) such that the equation is satisfied.
But how to implement this check in Python? The problem is that the equation is transcendental and might not have an
analytical solution, so numerical methods would be needed. For each (𝑚,𝑛), we can define a function 𝑓(𝑥) = 𝑚·arcsin(𝑥/2)+
𝑛 · arcsin((1− 𝑥)/2)− 𝜋, and check if there’s a root of 𝑓(𝑥) = 0 in (0, 1), excluding 𝑥 = 0.5. But how to check for roots? For
example, we can use the Intermediate Value Theorem. If 𝑓(𝑥) changes sign over an interval, there’s a root in that interval.
. . .
Now, let’s proceed to write the Python code.
<code>

1 import math
2

3 def has_solution (m, n):
4 def f(x):
5 return m * math.asin(x/2) + n * math.asin ((1 - x)/2) - math.pi
6

7 # Check interval (0, 0.5)
8 left = 0.0001
9 right = 0.4999
10 if f(left) * f(right) < 0:
11 return True
12

13 # Check interval (0.5 , 1)
14 left = 0.5001
15 right = 0.9999
16 if f(left) * f(right) < 0:
17 return True
18

19 return False
20

21 count = 0
22 for m in range (1, 101):
23 for n in range (1, 101):
24 if has_solution (m, n):
25 count += 1
26

27 print(count)
28

</code>
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<interpreter> 940 </interpreter>
. . .
Wait, but the code is written in Python, and the interpreter output is 940. So the final answer is 940 .

Table 7: A case of insight-to-computation transformation.

[Question]
Find the largest real number 𝜆 with the following property: for any positive real numbers 𝑝, 𝑞, 𝑟, 𝑠 there exists a complex
number 𝑧 = 𝑎+ 𝑏𝑖(𝑎, 𝑏 ∈ R) such that

|𝑏| ≥ 𝜆|𝑎| and (𝑝𝑧3 + 2𝑞𝑧2 + 2𝑟𝑧 + 𝑠) · (𝑞𝑧3 + 2𝑝𝑧2 + 2𝑠𝑧 + 𝑟) = 0.

[Response]
Okay, let’s try to tackle this problem step by step. . . . . .
But how do we approach this? Maybe we can think about the problem by considering specific cases . . . Perhaps the worst case
occurs when 𝑝 = 𝑞 and 𝑟 = 𝑠? . . . Let’s try to consider a symmetric case. . . .Maybe choosing 𝑝 = 𝑞 = 1 and 𝑟 = 𝑠 = 1. Let’s
try that. . . .
The roots are 𝑧 = −1 and roots of 𝑧2 + 𝑧 + 1 = 0, which are −1±𝑖

√
3

2
. Let’s compute their |𝑏|/|𝑎|:

𝑧 =
−1± 𝑖

√
3

2
→ 𝑎 = −1/2, 𝑏 = ±

√
3/2.

So |𝑏| =
√
3/2, |𝑎| = 1/2. So |𝑏|/|𝑎| is

√
3.

So for this case, 𝜆 can be as large as
√
3. But this is just for this specific case. . . .

This is getting a bit abstract. Maybe we can consider a case where both 𝑃 (𝑧) and 𝑄(𝑧) have roots with minimal |𝑏|/|𝑎|, and
find what that value is. . . .when 𝑡 is very small. Let me try to find its roots numerically for a specific small 𝑡. Let me write a
Python code snippet to find the roots of 𝑃 (𝑧) = 𝑧3 + 2𝑧2 + 0.2𝑧 + 0.1.
<code>

1 import numpy as np
2

3 # Coefficients for P(z) = z^3 + 2z^2 + 0.2z + 0.1
4 coeffs = [1, 2, 0.2, 0.1]
5 roots = np.roots( coeffs )
6 print(roots)
7

</code>
<interpreter> [-1.92303902+0.j, -0.03848049+0.22476716j, -0.03848049-0.22476716j] </interpreter>
For these complex roots, |𝑏|/|𝑎| is 0.2248/0.0385 ≈ 5.83. . . .Wait, but this case gives a high value of |𝑏|/|𝑎|. So maybe the
worst case is when the minimal such value is low. . . .
But how to find that? It seems challenging without more insight. . . . Alternatively, consider using symmetry. . . . But if we set
𝑠 = 4𝑞𝑟/𝑝, for example, let’s set 𝑝 = 1, 𝑞 = 1, 𝑟 = 1, then 𝑠 = 4 * 1 * 1/1 = 4. So 𝑃 (𝑧) = 𝑧3 + 2𝑧2 + 2𝑧 + 4. Let’s find its
roots. Using numpy again:
<code>

1 import numpy as np
2

3 coeffs = [1, 2, 2, 4]
4 roots = np.roots( coeffs )
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5 print(roots)
6

</code>
<interpreter> [-2.00000000e+00+0.j, 1.66533454e-16+1.41421356j, 1.66533454e-16-1.41421356j] </interpreter>
So |𝑏|/|𝑎| is infinite (since 𝑎 is nearly zero), but for practical purposes, this suggests that for this case, there are roots with
very large |𝑏|/|𝑎|. So this case is not helpful. . . . This suggests that for this case, we can achieve |𝑏|/|𝑎| up to

√
3.

. . .
Let’s think of a case where the ratio is lower than

√
3. . . . Let me consider the case where 𝑝 = 𝑞 = 1, 𝑟 = 1, 𝑠 = 2. Then

𝑃 (𝑧) = 𝑧3 + 2𝑧2 + 2𝑧 + 2. Let’s find its roots using numpy.
<code>

1 import numpy as np
2

3 coeffs = [1, 2, 2, 2]
4 roots = np.roots( coeffs )
5 print(roots)
6

</code>
<interpreter> [-1.54368901+0.j, -0.22815549+1.11514251j, -0.22815549-1.11514251j] </interpreter>
So |𝑏|/|𝑎| = 1.115/0.228 ≈ 4.89. The real root has |𝑏|/|𝑎| = 0. So again, the maximum is 4.89.
This doesn’t seem to help. . . . Let me think of a different approach. . . .
Let me assume that there is a root 𝑧 = 𝑎+ 𝑏𝑖 with |𝑏| = 𝜆|𝑎|. Let’s assume 𝑎 ̸= 0. Then, 𝑏 = 𝜆𝑎 or 𝑏 = −𝜆𝑎. Let’s assume
𝑏 = 𝜆𝑎. . . . Substitute 𝑧 = 𝑎+ 𝜆𝑎𝑖 = 𝑎(1 + 𝜆𝑖) into 𝑃 (𝑧) = 𝑝𝑧3 + 2𝑞𝑧2 + 2𝑟𝑧 + 𝑠 = 0.
. . .
Since 𝑎 ̸= 0 and 𝜆 is non-zero (otherwise, we have real roots), we can divide both sides by 𝜆𝑎:

𝑝𝑎2(3− 𝜆2) + 4𝑞𝑎+ 2𝑟 = 0

This is one equation.
From the equation, since all terms except the first are positive, we must have (3− 𝜆2) < 0, which implies 𝜆2 > 3, or 𝜆 >

√
3.

This suggests that for any non-real root, the ratio |𝑏|/|𝑎| must be greater than
√
3.

. . .
So, we have two key pieces of information:
1. We found a specific case (𝑝 = 𝑞 = 𝑟 = 𝑠 = 1) where the largest available ratio is exactly

√
3. This means 𝜆 cannot be

greater than
√
3.

2. Our general proof shows that for any case with a non-real root, the ratio must be greater than or equal to
√
3. This

means 𝜆 must be at least
√
3.

Combining these, the largest possible value for 𝜆 is exactly
√
3 .

Table 8: A case of exploration and verification via code.

[Question]
Let acute triangle 𝐴𝐵𝐶 have circumcenter 𝑂, and let 𝑀 be the midpoint of 𝐵𝐶. Let 𝑃 be the unique point such that
∠𝐵𝐴𝑃 = ∠𝐶𝐴𝑀,∠𝐶𝐴𝑃 = ∠𝐵𝐴𝑀 , and ∠𝐴𝑃𝑂 = 90∘. If 𝐴𝑂 = 53, 𝑂𝑀 = 28, and 𝐴𝑀 = 75, compute the perimeter of
△𝐵𝑃𝐶.
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[Response]
Okay, let’s try to solve this problem step by step.
. . .
Alternatively, maybe using coordinate geometry. Let me think about setting up coordinates.
. . .
First, compute 𝐴𝑥, 𝐴𝑦 numerically.

𝐴𝑥 = (75
√
13)/7, 𝐴𝑦 = 450/7

Then compute vectors AB and AC, their lengths, unit vectors, angle bisector direction, then reflect AM over this direction to
get the direction of AP. Then find the intersection of this line with the circle.
But implementing all this in code is time-consuming, but let’s try. Let me write the code.
<code>

1 import math
2

3 # Given values
4 AO = 53
5 OM = 28
6 AM = 75
7

8 # Compute Ay
9 Ay = 450 / 7
10 # Compute Ax
11 sqrt13 = math.sqrt (13)
12 Ax = (75 * sqrt13 ) / 7
13

14 # Coordinates of A
15 A = (Ax , Ay)
16 # Coordinates of O
17 O = (0, 28)
18 # Coordinates of M
19 M = (0, 0)
20 # Coordinates of B and C
21 B = (-45, 0)
22 C = (45, 0)
23

24 # Function to compute vector from point1 to point2
25 def vector (p1 , p2):
26 return (p2 [0] - p1[0], p2 [1] - p1 [1])
27

28 # Compute vectors AB and AC
29 AB = vector (A, B)
30 AC = vector (A, C)
31

32 # Compute lengths of AB and AC
33 len_AB = math.hypot(AB[0], AB [1])
34 len_AC = math.hypot(AC[0], AC [1])
35

36 # Compute unit vectors
37 unit_AB = (AB [0]/ len_AB , AB [1]/ len_AB )
38 unit_AC = (AC [0]/ len_AC , AC [1]/ len_AC )
39

40 # Angle bisector direction
41 angle_bisector_dir = ( unit_AB [0] + unit_AC [0], unit_AB [1] + unit_AC [1])
42
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43 # Vector AM
44 AM_vec = vector (A, M)
45

46 # Function to reflect a vector over another vector
47 def reflect_vector (v, axis):
48 # Normalize the axis vector
49 axis_len = math.hypot(axis [0], axis [1])
50 if axis_len == 0:
51 return v
52 axis_unit = (axis [0]/ axis_len , axis [1]/ axis_len )
53

54 # Dot product
55 dot = v[0] * axis_unit [0] + v[1] * axis_unit [1]
56

57 # Projection of v onto axis
58 proj = (dot * axis_unit [0], dot * axis_unit [1])
59

60 # Reflection
61 reflected = (2* dot* axis_unit [0] - v[0], 2* dot* axis_unit [1] - v[1])
62 return reflected
63

64 # Reflect AM_vec over angle bisector direction
65 AP_dir = reflect_vector (AM_vec , angle_bisector_dir )
66

67 # Normalize AP_dir to get direction
68 AP_dir_len = math.hypot( AP_dir [0], AP_dir [1])
69 AP_dir_unit = ( AP_dir [0]/ AP_dir_len , AP_dir [1]/ AP_dir_len )
70

71 # Parametric line for AP: A + t * AP_dir_unit
72 # Find intersection with circle with diameter AO
73

74 # Equation of circle with diameter AO
75 # (x - mid_x)^2 + (y - mid_y)^2 = r^2
76 mid_x = (A[0] + O[0]) /2
77 mid_y = (A[1] + O[1]) /2
78 r = AO / 2
79

80 # Parametric equations for line AP
81 # x = A[0] + t * AP_dir_unit [0]
82 # y = A[1] + t * AP_dir_unit [1]
83

84 # Substitute into circle equation
85 # (x - mid_x)^2 + (y - mid_y)^2 = r^2
86 # Expand and solve for t
87

88 def solve_for_t ():
89 # x = A[0] + t * dx
90 # y = A[1] + t * dy
91 dx = AP_dir_unit [0]
92 dy = AP_dir_unit [1]
93

94 # Expand (x - mid_x)^2 + (y - mid_y)^2 = r^2
95 # (A[0] + t*dx - mid_x)^2 + (A[1] + t*dy - mid_y)^2 = r^2
96 # Expand terms

Work in Progress 28



Understanding Tool-Integrated Reasoning

97 a = dx **2 + dy **2
98 b = 2 * (dx*(A[0] - mid_x) + dy*(A[1] - mid_y))
99 c = (A[0] - mid_x)**2 + (A[1] - mid_y)**2 - r**2
100

101 # Solve a*t^2 + b*t + c = 0
102 discriminant = b**2 - 4*a*c
103 if discriminant < 0:
104 return None
105 t1 = (-b + math.sqrt( discriminant )) / (2*a)
106 t2 = (-b - math.sqrt( discriminant )) / (2*a)
107 return t1 , t2
108

109 t_values = solve_for_t ()
110 if t_values :
111 t = t_values [0] # Choose one solution , the other might be A itself
112 px = A[0] + t * AP_dir_unit [0]
113 py = A[1] + t * AP_dir_unit [1]
114 P = (px , py)
115 else:
116 P = None
117

118 # Now compute perimeter of triangle BPC
119 if P:
120 def distance (p1 , p2):
121 return math.hypot(p1[0]-p2[0], p1[1]-p2 [1])
122

123 BP = distance (B, P)
124 CP = distance (C, P)
125 BC = distance (B, C)
126 perimeter = BP + CP + BC
127 print( perimeter )
128 else:
129 print("No intersection found")
130

</code>
<interpreter> 192.0 </interpreter>
The code computes the perimeter of triangle BPC and returns 192.0. Therefore, the answer is 192 .

Table 9: A case of offloading complex calculation.
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