
Agents Play Thousands of 3D Video Games
Zhongwen Xu, Xianliang Wang, Siyi Li, Tao Yu, Liang Wang, Qiang Fu and Wei Yang

Tencent

Abstract: We present PORTAL1, a novel framework for developing artificial intelligence agents capable
of playing thousands of 3D video games through language-guided policy generation. By transforming
decision-making problems into language modeling tasks, our approach leverages large language models
(LLMs) to generate behavior trees represented in domain-specific language (DSL). This method eliminates
the computational burden associated with traditional reinforcement learning approaches while preserving
strategic depth and rapid adaptability. Our framework introduces a hybrid policy structure that combines
rule-based nodes with neural network components, enabling both high-level strategic reasoning and
precise low-level control. A dual-feedback mechanism incorporating quantitative game metrics and vision-
language model analysis facilitates iterative policy improvement at both tactical and strategic levels. The
resulting policies are instantaneously deployable, human-interpretable, and capable of generalizing across
diverse gaming environments. Experimental results demonstrate PORTAL’s effectiveness across thousands
of first-person shooter (FPS) games, showcasing significant improvements in development efficiency,
policy generalization, and behavior diversity compared to traditional approaches. PORTAL represents a
significant advancement in game AI development, offering a practical solution for creating sophisticated
agents that can operate across thousands of commercial video games with minimal development overhead.
Experiment results on the 3D video games are best viewed on our project website.

An agent must learn from its experience.
– Rich Sutton

1. Introduction

Games have served as foundational testing grounds for artificial intelligence development since the field’s
inception [2, 9, 15, 17, 26, 27]. They provide ideal environments for measuring and advancing cognitive
capabilities including pattern recognition, memory utilization, reasoning, sophisticated planning and
generalization. The pursuit of creating AI systems capable of generalizing effectively across diverse game
environments represents a significant and ongoing challenge at the intersection of academic AI research
and the commercial game industry.
The gaming landscape underwent a profound transformation with the rise of user-generated content
(UGC) platforms, most notably pioneered by Roblox. UGC platforms have demonstrated unprecedented
scale in both creation and consumption. By allowing users to design, build, and share their own games
within a unified ecosystem, UGC games fundamentally altered the game development paradigm.
The explosive growth of UGC gaming created a unique challenge for traditional game-playing AI systems.
While conventional AI approaches had made remarkable progress in mastering specific games with
well-defined rulesets – from Go [17] to StarCraft II [26] – they faced inherent limitations in environments

1Portal symbolizes a gateway that provides access to thousands of game worlds and it represents connection and transition
between different gaming domains.

https://zhongwen.one/projects/PORTAL

Agents Play Thousands of 3D Video Games

characterized by constant flux and unbounded creativity. Traditional game AI typically relies on extensive
domain-specific engineering, carefully crafted heuristics, or reinforcement learning methodologies that
require millions/billions of training iterations within a single game environment. Such approaches simply
cannot scale to match the pace and diversity of user-created content, where thousands of new games
with unique mechanics, aesthetics, and objectives emerge daily. This fundamental mismatch between
traditional AI capabilities and the rapidly expanding universe of user-generated games highlights a critical
need for more adaptive, generalizable AI approaches – a gap that we are aiming to bridge here.
This paper introduces PORTAL(Policy Optimization and Reasoning for Tactical Artificial Learning),
a novel approach to generating game-playing artificial intelligence (AI) agents capable of operating
across thousands of 3D video games. By leveraging large language models (LLMs) [1, 10, 22–24] to
generate specialized behavior trees (BTs) [3] expressed in domain-specific language (DSL), we establish
a new paradigm for AI agent development that combines the strategic reasoning of LLMs with the
real-time performance requirements of commercial video games. Unlike traditional reinforcement
learning approaches [2, 5, 14, 26, 32] that require massive simulation resources and distributed training,
our method decouples the tactical planning process from execution, enabling rapid development and
deployment of sophisticated agents. This decoupling allows for the generation of diverse, adaptable,
and human-like behaviors while maintaining the computational efficiency necessary for commercial
application. PORTAL represents a significant advancement in the field by transforming complex decision-
making problems into language modeling challenges. Through an innovative hybrid architecture that
integrates rule-based nodes with neural network components, we demonstrate how LLM-generated
policies can be effectively executed in dynamic, real-time environments without the latency limitations
that typically constrain LLM-based agents.
On methodology, we propose a meta algorithm for decision-making problems that fundamentally reimag-
ines the role of large language models (LLMs) in game AI systems. Unlike prior works [1, 8, 27] where
LLMs directly function as actor policies, our approach positions these models as architects that generate
policy structures. This important innovation creates a hybrid architecture that leverages the strengths of
both paradigms: LLMs design sophisticated policy frameworks composed of interconnected basic building
blocks, with each node representing discrete functionality. These nodes can then be implemented as
neural networks, enabling dynamic adjustment to changing game environments. The nodes can also be
implemented with rule-based codes, where it brings exact control over behaviors. The resulting system
maintains the strategic sophistication and broadly contextual awareness of LLMs while incorporating the
adaptability and responsiveness of neural network approaches.
The remainder of this paper is organized as follows: Section 2 reviews related work in behavior trees,
reinforcement learning, and language models for game playing AIs. Section 3 details our methodology,
including the hybrid policy structure, DSL representation, and an agent-environment loop with reflection
feedbacks. Section 4 presents experimental results, and Section 5 discusses implications and potential
applications beyond gaming. We conclude our work and point out directions for future research.

2. Related Work

Behavior Trees: Behavior Trees (BTs) [3] have established themselves as a predominant paradigm for
artificial intelligence in modern game development, particularly within sophisticated engines such as

Work in Progress 2

Agents Play Thousands of 3D Video Games

Unreal Engine 52 and Unity. Their popularity stems from their capacity to organize complex AI behaviors
in a structured, modular, and visually intuitive manner. The foundational components of BTs include:

• Selector Nodes: Implement prioritized decision-making by evaluating child nodes sequentially
until one succeeds, enabling fallback behaviors.

• Sequence Nodes: Execute a series of actions in order, succeeding only if all component actions
succeed, facilitating complex, multi-step behaviors.

• Task Nodes: Perform atomic game actions such as movement, attack sequences, or environmental
interactions.

• Condition Nodes: Evaluate environmental states to determine execution paths.

This architecture is complemented by a Blackboard system that maintains state information accessible
to all nodes within the tree. In commercial implementations such as Unreal Engine 5, a dedicated AI
controller periodically evaluates the behavior tree against current game state, determining appropriate
actions for non-player characters (NPCs).
The modular structure of BTs facilitates code reuse, simplifies debugging, and enables designers to
implement sophisticated behaviors without extensive programming expertise. However, traditional BTs
rely primarily on manually crafted rules and conditions, limiting their adaptability to novel or highly
dynamic scenarios. Our work extends this established framework by incorporating neural components and
LLM-based generation, preserving the interpretability and modularity of classical BTs while enhancing
their adaptability and generalization capabilities.
Reinforcement Learning: Reinforcement Learning (RL) [20] has demonstrated remarkable achievements
in mastering complex environments across various domains. AlphaGo [17]’s victory over world champion
Lee Sedol in 2016 marked a watershed moment, demonstrating how deep neural networks combined
with Monte Carlo Tree Search (MCTS) could achieve superhuman performance in challenging strategic
domains. This approach initially leveraged human expert data before transitioning to pure self-play in
subsequent iterations such as AlphaGo Zero [18] and AlphaZero [19], which surpassed its predecessor’s
capabilities without human guidance. Beyond board games, RL has tackled increasingly complex video
game environments. OpenAI Five [2] demonstrated emergent team strategies in Dota 2, while DeepMind’s
AlphaStar [26] achieved Grandmaster-level performance in StarCraft II – both representing significant
advances in handling high-dimensional state and action spaces with partial observability. Similarly,
Tencent’s Honor of Kings AI system [32] has pushed the boundaries further in complex Multiplayer
Online Battle Arena (MOBA) games.
These systems [5, 14] typically employ large-scale distributed architectures, training on millions or billions
of game frames to develop effective policies. While impressive in their capabilities, these approaches
incur substantial computational costs – often requiring hundreds or thousands of GPUs and enormous
CPUs for game simulations, operating for weeks or months – and frequently struggle with generalization
beyond their specific training environments. Our work addresses these limitations by decoupling strategic
planning from execution, significantly reducing computational requirements while enhancing cross-
environment generalization.
Language Models for Game-playing AIs: Recent research has begun exploring the potential of large
language models (LLMs) for creating game-playing agents. As comprehensively documented in the survey

2Unreal Engine 5 Documentation on Behavior Trees

Work in Progress 3

https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-behavior-tree-node-reference-tasks

Agents Play Thousands of 3D Video Games

by [6], these approaches have primarily focused on three categories of games:

• Abstract Token Games: Board games like Chess [19] and Go, where states and actions can be
represented as discrete, symbolic tokens;

• Text-Based Games: Interactive fiction environments like Zork [25], where game interactions
naturally occur through textual commands and descriptions;

• API-Mediated Games: Complex environments where game state is transformed into textual
descriptions and LLMs generate actions as API calls to game interfaces.

Voyager [27] exemplifies the API-mediated approach, leveraging GPT-4 [10] to generate code for Minecraft
tasks through the Mineflayer [11] JavaScript API. A distinctive feature of Voyager is its curriculum-based
skill acquisition, progressively building a library of capabilities through tool usage and exploration.
However, Voyager fundamentally relies on textual representations of game states rather than direct
engagement with raw environmental data. Other research [8] has applied similar principles to complex
strategy games like StarCraft II through frameworks like TextStarCraft, which translates game states
into textual descriptions and facilitates LLM interaction through API calls. While demonstrating the
potential of LLMs for strategic reasoning, these approaches face a significant limitation: the inherent
latency of LLM inference renders them impractical for real-time applications, with reported gameplay
durations extending to seven hours per match – clearly prohibitive for commercial deployment. More
recently, Anthropic’s Claude 3.7 Sonnet [1] has demonstrated impressive capabilities in Pokémon Red
with zero-shot generalization, defeating Gym Leaders through extended reasoning. However, its success
relies on relaxed time constraints that would be unacceptable in commercial gaming contexts. Our
approach differs fundamentally from these precedents in three critical aspects:

• Offline Policy Generation: Rather than relying on LLM inference during gameplay, we utilize LLMs
to generate policies expressed in Domain-Specific Language (DSL), which are then interpreted into
efficient, executable code, eliminating inference latency during gameplay.

• Hybrid Architecture: We combine the strategic reasoning capabilities of LLMs with the real-time
performance of neural networks and rule-based systems, leveraging the strengths of each approach
while mitigating their individual limitations.

• Cross-Game Generalization: To our knowledge, we are the first to demonstrate agents capable
of playing thousands of distinct 3D video games through a unified approach, highlighting the
generalization capabilities of our method.

This synthesis of LLM-based policy generation with efficient execution mechanisms represents a novel
contribution to the field, addressing the practical constraints that have limited the application of language
models in real-time gaming environments.

3. Method

3.1. Overview

Our approach introduces a novel policy representation that formalizes the hybrid structure of game-playing
AI agents. We define a policy 𝜋 as a triple (Π,Θ,Φ), where:

Work in Progress 4

Agents Play Thousands of 3D Video Games

• Π represents the hierarchical tree structure that defines the control flow and relationships between
nodes. Formally, Π can be expressed as a directed acyclic graph (DAG) where nodes are drawn
from Θ ∪ Φ, and edges represent the execution flow between components;

• Θ denotes the set of neural network-parameterized task nodes: Θ = {𝜃1, 𝜃2, . . . , 𝜃𝑚}. Each 𝜃𝑖
implements a mapping from an observation space 𝑂 (a subset of the complete environment state
𝑆) to either a specific action or a probability distribution over possible actions. Mathematically, this
can be expressed as 𝜃𝑖 : 𝑂 → 𝐴 or 𝜃𝑖 : 𝑂 → 𝑃 (𝐴), where 𝐴 represents the action space;

• Φ comprises the set of rule-based nodes: Φ = {𝜑1, 𝜑2, . . . , 𝜑𝑛}. These include condition nodes
and simple action nodes implemented through traditional programming. Each 𝜑𝑗 represents a
deterministic function that maps an observation to either a boolean value (for condition nodes) or
a specific action (for action nodes). This relationship can be formalized as 𝜑𝑗 : 𝑂 → {True, False}
or 𝜑𝑗 : 𝑂 → 𝐴.

This formalization offers several advantages over conventional approaches. First, it establishes a clear
separation between the strategic structure of the policy (Π) and its implementation details (Θ and Φ).
This separation enables independent optimization of each component, facilitating rapid iteration and
refinement. Second, by combining rule-based and neural network components, the policy can leverage
both the interpretability and reliability of hand-crafted rules as well as the adaptability and pattern
recognition capabilities of neural networks. Finally, this representation provides a natural framework for
language models to generate and modify policies by focusing on the structural aspects (Π) while leaving
the implementation details of neural components (Θ) to specialized training procedures.
Our policy representation can be formally defined as:

Definition 3.1. A policy 𝜋 = (Π,Θ,Φ) consists of a tree structure Π, neural network task nodes
Θ = {𝜃1, 𝜃2, . . . , 𝜃𝑚}, and rule-based nodes Φ = {𝜑1, 𝜑2, . . . , 𝜑𝑛}, where Π determines the hierarchical
organization and execution flow of elements from Θ and Φ.

3.2. Domain-specific Language Representation

We have developed a domain-specific language (DSL) to represent behavior trees in a format that is
both human-readable and machine-executable. This DSL serves as the interface between large language
models and the policy execution environment, enabling seamless translation of strategic concepts into
operational policies.
The syntax of our DSL follows a hierarchical structure that directly mirrors the organization of behavior
trees. Key syntactic elements include:

• Hierarchical Structure: Indentation denotes parent-child relationships between nodes, providing a
visual representation of the tree’s organizational structure. This design choice enhances readability
while maintaining a direct correspondence to the underlying computational representation.

• Node Types: The DSL supports four primary node types, each serving a distinct role in policy
execution:

– Selector Nodes (selector:): Implement prioritized execution, attempting child nodes se-
quentially until one succeeds.

Work in Progress 5

Agents Play Thousands of 3D Video Games

– Sequence Nodes (sequence:): Execute child nodes in order, continuing only if each node
succeeds.

– Condition Nodes (condition:<condition_key>): Evaluate environmental predicates, de-
termining execution paths based on game state.

– Task Nodes (task: <action_key><param_key>): Execute specific actions within the
game environment, potentially utilizing neural networks for implementation.

– Logical Operations: The DSL incorporates logical operations, such as negation (condition:
no), enabling the construction of complex conditional statements without requiring additional
syntax.

The following example illustrates a simple policy for a first-person shooter (FPS) game:
1 selector :
2 sequence :
3 condition : has_enemy_in_view
4 task: shoot random_enemy_in_view
5 sequence :
6 condition : no
7 condition : has_enemy_in_view
8 task: move_to random_enemy_location

Listing 1: A Behavior Tree DSL Example

This policy implements a straightforward combat strategy: if an enemy is visible, select a random visible
enemy and attack; otherwise, move toward a known enemy location. The simplicity and clarity of this
representation belies the sophisticated decision-making process it encodes, demonstrating the expressive
power of our DSL.
A critical advantage of this representation is its compatibility with large language models, which can gen-
erate, interpret, and modify these tree structures based on high-level strategic descriptions. Furthermore,
the DSL’s hierarchical nature facilitates incremental refinement and composition of policies, enabling the
construction of complex behaviors from simpler building blocks. This property is particularly valuable for
the iterative improvement process employed in our approach.

3.3. Extensions Beyond Classic Behavior Trees

Traditional behavior trees typically rely exclusively on rule-based implementations, employing determin-
istic algorithms like A* pathfinding for navigation tasks. While effective in static environments, these
conventional approaches falter when confronted with dynamic scenarios featuring moving obstacles,
adversarial agents, or complex environmental interactions. We address this limitation by introducing a hy-
brid architecture that augments the classical behavior tree framework with neural network-parameterized
task nodes.
As shown in Figure 1, our architecture instantiates specific task nodes as neural networks, particularly
for operations that demand adaptive responses to environmental complexity. For instance, rather than
implementing a move_to task with a deterministic pathfinding algorithm, we utilize a neural network
trained to navigate dynamic environments while avoiding obstacles and responding to changing conditions.
Note that the neural nets applied in our work are tiny nets such as two layers of fully-connected layers /
convolutional layers.

Work in Progress 6

Agents Play Thousands of 3D Video Games

Strategy
Description

BT DSL

Control Flows

Neural
Nets

Hand-crafted
Rules

Generated
Codes

Blackboard
Variables

Task Nodes

Neural Nets：strong perception，complex actions
Hand-crafted rules：simple and concrete logics
Generated codes：CodeGen according to Task
Node description and APIs

Behavior Tree DSL

Figure 1: Overview of the behavior tree generation process using LLMs.

This hybrid approach represents a fundamental advancement over both purely rule-based behavior
trees and end-to-end neural policies. By combining the strengths of symbolic reasoning (through the
behavior tree structure) with subsymbolic learning (via neural networks), we achieve policies that are
simultaneously more adaptive, interpretable, and generalizable than either approach in isolation.
A fundamental innovation in our approach is the reconceptualization of decision-making problems as
language modeling tasks. Rather than training policies through direct interaction with environments, we
leverage the capabilities of LLMs to generate DSL representations of behavior trees. This transformation
offers several compelling advantages:

• Rapid Iteration: The language modeling approach facilitates rapid prototyping and refinement of
policies, as modifications can be made at the structural level without requiring extensive retraining
of neural components.

• Enhanced Environmental Perception: Neural network-parameterized task nodes leverage so-
phisticated perceptual capabilities to process environmental information, enabling more informed
decision-making in complex scenarios. Rather than responding to simplified abstractions of the
environment, these nodes can integrate rich sensory data to guide their actions.

• Simplified Reward Structures: Each neural network task node is designed with a focused, often
unidimensional reward function. For example, a move_to node might optimize solely for min-
imizing distance to a target location, while a shoot node maximizes accuracy against a specific
enemy. This decomposition of complex, multi-objective reward landscapes into simpler, targeted
optimization problems significantly enhances learning efficiency and generalization capabilities.

The power of the proposed system demonstrates that even with tiny neural networks Θ , a well-designed
Domain-Specific Language (DSL) can leverage them to construct a powerful policy 𝜋.

Transformation from Decision-Making into Language Modeling
We transform the decision-making problems into language modeling problems of building up DSL
for policies. This transformation allows us to leverage the full potential of LLMs as reasoning engines
for strategic planning, while maintaining the computational efficiency necessary for real-time
execution in dynamic environments.

Work in Progress 7

Agents Play Thousands of 3D Video Games

3.4. An Agent-Environment Loop

BT
Generator Parser

RolloutReflexion

AI
Server

Figure 2: System architecture showing the integration of LLM-based behavior tree generation with
environment interaction and reflexion

Following the reinforcement learning paradigm, we conceptualize the interaction between our agents
and their environments as a cyclical process of policy refinement. However, our approach diverges
from traditional methods in its implementation of this cycle. The agent continuously refines its policy
parametrization, denoted as Π, through structured interaction with the environment and analysis of the
resulting outcomes.
Central to our approach is the Reflexion [16, 31] module, which serves as the bridge between environ-
mental feedback and policy improvement. This module processes two distinct types of feedback:

• Quantitative GameMetrics: Direct numerical measurements extracted from the game environment,
such as kills, deaths, objective completions, and resource utilization. These metrics provide precise,
objective evaluations of policy performance across specific dimensions. To make these metrics
accessible to language models, we translate them into natural language descriptions that highlight
relevant patterns and trends.

• Vision-Language Model Analysis: A complementary feedback mechanism that utilizes a vision-
language model (VLM) to analyze "mini-map" representations of gameplay from a bird’s-eye
perspective. This analysis provides high-level strategic insights that may not be captured by
numerical metrics alone, such as spatial control patterns, tactical adaptations, and coordination
effectiveness.

The dual-feedback mechanism enables comprehensive policy evaluation and improvement at multiple
levels of abstraction. The quantitative metrics offer granular feedback on tactical execution, while the VLM
analysis provides broader strategic context. By integrating these complementary perspectives, our system
can identify both local optimizations and global strategic shifts that may improve overall performance.
The iterative improvement process follows a structured cycle: the LLM generates an initial behavior
tree expressed in DSL, based on high-level strategic descriptions. This behavior tree is compiled into an
executable policy and deployed in the game environment. The agent interacts with the environment,

Work in Progress 8

Agents Play Thousands of 3D Video Games

generating gameplay data. The Reflexion module processes this data, extracting quantitative metrics
and producing VLM analyses. These insights are provided to the LLM, which generates an improved
behavior tree that addresses identified weaknesses. This cycle continues iteratively, with each generation
refining the policy based on accumulated insights from previous deployments. The result is a continuously
improving agent that adapts to the specific challenges and opportunities presented by its environment.
The overall procedure is shown in Figure 2.

Policy Improvement with Experience
Through Reflexion on environmental experience, the LLM updates the policy DSL Π to optimize
for either quantitative game metrics or global tactical analysis.

3.5. Chain-of-Thought for Tree Generation and Reflexion

The hierarchical nature of our policy representation aligns naturally with a structured reasoning approach.
Our policies exhibit a tree-like organization where higher levels manage strategic planning while lower
levels execute tactical actions to achieve specific objectives. For instance, within this hierarchy, Sequence
nodes decompose complex goals into sequential subtasks executed from left to right, while Selector
nodes implement prioritized decision-making, attempting child nodes in order until one succeeds.
To leverage this hierarchical structure effectively, we implement a level-by-level generation process
utilizing Chain-of-Thought (CoT) prompting [29]. This technique instructs the LLM to construct the
behavior tree progressively, beginning with root nodes and systematically expanding through each
subsequent level. This approach offers several advantages – Focused Reasoning: By addressing one level
at a time, the LLM can concentrate its reasoning capacity on a manageable subset of the policy structure,
improving overall coherence and strategic alignment; Iterative Refinement: The level-by-level approach
facilitates targeted revision of specific tree components without requiring complete regeneration of the
entire policy.
Complementing this generative process, we implement a level-by-level reflexion mechanism that evaluates
and revises specific sections of the tree based on performance feedback. When behavioral deficiencies are
identified, the LLM can focus its analysis on the relevant subtree, proposing targeted modifications that
address specific shortcomings while preserving effective components.
Our CoT implementation employs structured prompting with explicit reasoning steps, guiding the LLM
through a systematic tree construction process: First, the LLM identifies the primary strategic objectives
and potential challenges. Next, it determines the appropriate root node type (typically a Selector) to
organize high-level decision-making. For each child of the root, the LLM articulates a specific subgoal
and constructs an appropriate subtree. This process continues recursively until all paths terminate in
executable task nodes. Throughout this process, the LLM explicitly documents its reasoning, explaining
why particular node types, conditions, and actions were selected. This explicitness not only improves
the quality of the generated policies but also enhances interpretability, providing human designers with
insight into the strategic principles underlying the policy structure.

Key Takeaways
Tree-like CoTs facilitate better reasoning and reflection in strategy planning.

Work in Progress 9

Agents Play Thousands of 3D Video Games

3.6. Sampling and Post-training

prompt

Behavior Tree
(DSL)

…

reward

reflex prompt reflex prompt

Figure 3: The LLM-based behavior tree generation and refinement process

By recasting decision-making as a language modeling problem, we can generate extensive training data
through systematic exploration of the policy space. This exploration utilizes breadth-first search (BFS) to
sample 𝑁 potential behavior trees in parallel, retaining the 𝐾 best-performing policies in each iteration
based on direct environmental rewards.
The sampling process generates valuable trajectory data that can be leveraged for model improvement.
Unlike traditional reinforcement learning, which collects environment trajectory data (i.e., state-action
pairs), our approach collects LLM trajectory data – sequences of prompts, DSL outputs, and associated
rewards:

[(prompt0,DSL0, 𝑟0), (prompt1,DSL1, 𝑟1), (prompt2,DSL2, 𝑟2), . . . (prompt𝑇 ,DSL𝑇 , 𝑟𝑇)]

This data can be utilized for Supervised Fine-Tuning (SFT) or reinforcement learning approaches
tailored to language models. The structured format directly connects strategic descriptions, policy
implementations, and performance outcomes, enabling the model to learn the relationships between
high-level goals and effective policy structures.
As illustrated in Figure 3, each iteration 𝑖 produces a specific DSL output representing a policy and
receives reward feedback 𝑟𝑖 from the environment. By structuring each step in the LLM inference process
with explicit tags like <reflection>...</reflection> and <think>...</think> [4], we create
"Meta CoTs" [30] that enable the model to systematically explore the solution space and iteratively
improve its policy outputs.

3.7. A Policy Network to Schedule Policies

The generative capabilities of LLMs, whether frozen or fine-tuned, enable the production of diverse policy
candidates expressed as DSL descriptions. These candidates represent various strategic approaches to
addressing game challenges. However, this diversity introduces a new challenge: determining which
policy is most appropriate for a specific environment state at a given moment. While exhaustive evaluation
of all candidates is theoretically possible, it would be computationally prohibitive in real-time applications.
To address this challenge, we introduce a policy scheduling network that dynamically selects from a
repertoire of pre-generated behavior trees based on environmental conditions. This network receives
the same state observations as traditional reinforcement learning policies but produces a fundamentally

Work in Progress 10

Agents Play Thousands of 3D Video Games

different output. Rather than directly selecting atomic actions, it identifies the most suitable behavior
tree for the current context from a pre-defined library of options.
This approach draws inspiration from the options [20, 21] framework in hierarchical reinforcement
learning, where options represent temporally extended courses of action that an agent can follow. In our
implementation, each behavior tree constitutes an option – a predetermined policy that, once selected,
governs the agent’s behavior until completion or interruption. The policy network operates at a meta-
decision level, determining when to switch between these options based on changing environmental
conditions. The policy network receives environmental observations and selects the most appropriate
behavior tree from the available library. This tree is then executed until completion or until the network
determines that a different strategy would be more effective given updated environmental conditions.

4. Experiments

We conducted experiments on Yuan Meng Star3, a platform developed by TiMi Studio under Tencent
Games, which hosts tens of millions of User Generated Content (UGC) games. Yuan Meng Star provides
players with a comprehensive UGC platform featuring built-in editors, tools, and assets to create their
own games. The platform encompasses a diverse range of game genres, including speedrunning, survival,
first-person shooter (FPS), and party games. For our research, we demonstrated the efficacy of our
proposed method specifically on FPS games created by thousands of players, though the same principles
can be applied to develop agents for other game genres as well. The LLMs used to produce the DSL are
Qwen2.5-32B-Coder [24]. All the materials of the shown BTs can be found on our project website,
including the illustration, DSL and JSON files of the BTs. The neural networks in the task nodes have
only two Convolutional layers + Fully-connected layers.
Due to copyright restrictions associated with UGC games, we present only a select subset of representative
games in this paper. However, it should be noted that comprehensive testing across a substantially
broader range of UGC environments has been conducted internally, with consistent results supporting
our findings. The examples showcased here were specifically chosen to illustrate key aspects of our
methodology while respecting intellectual property constraints.

4.1. Optimization for Game Metrics

We first demonstrate the effectiveness of our approach through a Breadth-first Search (BFS) procedure
designed to optimize specific game metrics. Figure 4 illustrates two independent experimental runs opti-
mizing the "time between kills" metric, where 100% represents optimal performance. Individual Behavior
Trees (BTs) are depicted in lighter colors, while the top-performing BT is highlighted with solid dots.
The results clearly show that through successive reflection iterations, the individual BTs converge toward
near-optimal performance. Notably, the top-performing BTs maintain consistent performance across
iterations. These findings confirm that our proposed algorithm, through structured agent-environment
interactions, successfully optimizes specified game metrics by refining the underlying policy structure.
This demonstrates the viability of our meta-algorithmic approach in which LLMs architect policies rather
than directly outputting actions.

3https://en.wikipedia.org/wiki/Yuan_Meng_Star

Work in Progress 11

https://zhongwen.one/projects/PORTAL
https://en.wikipedia.org/wiki/Yuan_Meng_Star

Agents Play Thousands of 3D Video Games

0 1 2 3 4 5 6 7 8 9
Reflexion Iteration

60

40

20

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 (%
)

Time Between Kills Performance Over Iterations

Top BT
Individual BTs

0 1 2 3 4 5 6 7 8 9
Reflexion Iteration

60

70

80

90

100

Pe
rf

or
m

an
ce

 (%
)

Time Between Kills Performance Over Iterations

Top BT
Individual BTs

Figure 4: Two independent runs of Breadth-first Search (BFS).

4.2. Vision-Language Models for Reflexion

Vision-Language Models (VLMs) such as Gemini [22] provide powerful video understanding capabilities
that can analyze extended gameplay footage through natural language interaction. This multimodal
understanding capacity offers a valuable mechanism for tactical planning assessment and refinement. In
traditional competitive games like Dota and StarCraft II, mini-maps provide players with critical global
information to inform strategic decision-making. While the games in our experimental environment do
not natively provide such mini-maps, we generate them synthetically using environmental data including
map layouts, player positions, status indicators, and other relevant information. We accumulate this
information throughout gameplay sessions and feed the resulting replay recordings into a VLM, enabling
comprehensive analysis of global tactical strategies. For our evaluation of first-person shooter games, we
structure this analysis across five critical dimensions:

• Map Control: Assessment of territorial dominance, strategic position maintenance, and spatial
resource utilization.

• Adaptability: Evaluation of the agent’s capacity to adjust strategies in response to changing
circumstances or opponent behaviors.

• Team Coordination: Analysis of collaborative behaviors, role specialization, and synchronized
actions.

• Team Aggression: Measurement of offensive initiative, pressure application, and risk-taking
behavior.

• Goal Achievement: Assessment of progress toward primary and secondary objectives.

For each dimension, we employ specialized prompts that guide the VLM to provide detailed analysis with
specific justifications and quantitative ratings. The resulting multi-dimensional assessment, visualized in
Figure 5, provides a comprehensive view of tactical performance that complements traditional numerical
metrics. The integration of VLM-based analysis into our Reflexion module has demonstrated significant
benefits for behavior tree generation. As illustrated in Figure 5, policy improvements guided by VLM
analysis show consistent enhancement across all five tactical dimensions. This improvement pattern
highlights the complementary nature of VLM-based reflection and traditional numerical assessment
– while numerical metrics effectively capture local performance indicators (e.g., accuracy, resource

Work in Progress 12

Agents Play Thousands of 3D Video Games

Team Aggression

Team Coordination

Map Control

Adaptability

Goal Achievement

2.78
4.00

2.22

3.33

2.78

3.67

1.89

3.00
2.00

4.00

Before VLM reflection
After VLM reflection

Figure 5: Effects of VLM reflexion on game plays.

efficiency), VLM analysis excels at identifying global tactical patterns that might not be immediately
apparent from statistical measures alone.

4.3. Playing Thousands of First-Person Shooter (FPS) Games

Figure 6: Illustrations of a basic policy playing 3× 3 = 9 FPS games.

Figure 6 presents visual evidence of our policies operating across a diverse set of 9 first-person shooter
games (arranged in a 3 × 3 grid). Video demonstrations, all the materials about the behavior trees
(including illustration, DSL, and JSON files) are available on our project website. These results demonstrate
the remarkable generalization capabilities of our hybrid policies, which successfully transfer across games
with varying visual styles, mechanical implementations, and environmental configurations.

Work in Progress 13

https://zhongwen.one/projects/PORTAL

Agents Play Thousands of 3D Video Games

Figure 7: Illustrations of a team attack policy playing 3× 3 = 9 FPS games.

We present a case study focused on team coordination optimization. We applied our iterative refinement
process with specific emphasis on team coordination metrics. The resulting progression, culminating in the
structure shown in Figure 7, demonstrates substantial qualitative improvements in collaborative behaviors,
including coordinated positioning, covering fire patterns, and objective-focused role specialization. An
additional example of advantage point policy is shown on our project website.

4.4. Instant Development Procedure

A particularly significant advantage of our approach is its enablement of a novel and highly efficient
deployment pipeline. Traditional approaches to behavioral adjustment in game AI typically require
computationally expensive retraining of neural networks, resulting in substantial development delays
and resource requirements. In contrast, our methodology facilitates immediate adaptation through
dynamic behavior tree generation. PORTAL generates new Behavior Trees based on specified criteria,
exporting the resulting policy as a JSON configuration file that can be directly ingested by the game
server. This mechanism enables real-time adaptation of agent behavior within the game environment
without requiring any recompilation or neural network retraining. The practical implications of this
capability are substantial:

• Rapid Iteration: Game designers can specify behavioral modifications in natural language, receive
an updated policy within minutes, and immediately test the results in-game.

• Dynamic Difficulty Adjustment: Servers can automatically generate customized opponent behav-
iors tailored to specific player skill levels or play styles.

• Environment-Specific Adaptation: Policies can be dynamically adjusted to accommodate new
game environments, objectives, or rule modifications without developer intervention.

This instant development procedure represents a paradigm shift in game AI deployment, transitioning
from the traditional cycle of specification, implementation, training, and deployment to a streamlined
process where natural language descriptions directly translate to executable policies. The resulting
efficiency gains not only accelerate development but also enable entirely new approaches to dynamic
content generation and personalized gaming experiences.

Work in Progress 14

https://zhongwen.one/projects/PORTAL

Agents Play Thousands of 3D Video Games

5. Discussions

Beyond FPS Games: The methodology described in this paper extends readily beyond the first-person
shooter genre explored in our experiments. The core architecture – leveraging LLMs to generate behavior
trees expressed in DSL – provides a flexible framework applicable to diverse game genres and interaction
paradigms. Adapting our approach to new game categories follows a standardized procedure:

• Identify the basic action nodes required for the target genre, such as resource management in
strategy games, spell casting in RPGs, or evasive maneuvers in racing games.

• Train focused neural networks to handle specific navigation and skill requirements for the targeted
genre, ensuring effective execution of low-level tasks.

• Modify the prompting framework to incorporate relevant gamemechanics descriptions and desired
tactical strategies appropriate for the new context.

The fundamental decomposition principle – separating high-level strategic planning from low-level
execution – remains consistent across genres, enabling rapid adaptation to new gaming paradigms.
This versatility stems from the generality of the behavior tree formalism and the flexibility of our DSL
representation, which can accommodate diverse action spaces and strategic considerations without
structural changes to the underlying architecture.

Behavior
Requirements

DSL Neural Nets

Language Modeling
Problems

Data Construction
Post-Training

Traditional IL/RL
Problems

IL: Human Data
RL:Simple Rewards

Figure 8: Decomposition of AI behavior requirements and How to tackle them.

Generalization: A persistent challenge in traditional reinforcement learning is achieving robust gen-
eralization to unseen environments. Conventional RL agents typically exhibit substantial performance
degradation when confronted with even minor variations in environment dynamics or reward struc-
tures—a phenomenon attributable to overfitting to specific training conditions. Our approach addresses
this challenge through a two – tiered generalization strategy as illustrated in Figure 8:

• Tactical-Level Generalization: The high-level strategic structure, represented through behavior
trees or DSL expressions, captures generalizable decision principles that transfer effectively across
environments. For example, the fundamental strategic patterns in FPS games – such as prioritizing
threat elimination, position optimization, and resource management – remain consistent regardless
of specific game implementation details. These tactical structures transfer seamlessly between
games from different studios or created by different developers, providing a robust foundation for
cross-environment performance.

Work in Progress 15

Agents Play Thousands of 3D Video Games

• Action-Level Generalization: At the execution level, we parameterize specific actions using focused
neural networks trained with simplified, single-dimensional reward functions. This decomposition
represents a significant departure from conventional approaches that attempt to optimize multi-
objective reward functions simultaneously. By isolating specific objectives, such as navigation
efficiency, target acquisition, or threat avoidance, we create more generalizable task-specific policies
that perform consistently across diverse environmental conditions.

The decomposition inherent in our hybrid architecture converts complex, multi-objective optimization
problems into collections of simpler, more tractable subproblems. This approach mitigates the ambiguity
and conflicting objectives often present in monolithic reward functions, resulting in substantially improved
generalization. Each neural component focuses on a well-defined task with clear success criteria, enabling
more effective learning and transfer across environments.
Diversity of Behaviors: Behavioral diversity represents a critical factor in creating engaging and realistic
game environments populated by non-player characters. Our framework facilitates diverse agent behav-
iors through systematic variation at both tactical and execution levels as shown in Figure 8. At the tactical
level, diversity emerges from several sources: variations in the prompting descriptions provided to the
LLM, resulting in structurally distinct behavior trees; differences in the available node sets accessible to
the DSL, constraining or expanding strategic possibilities; explicit diversity objectives incorporated into
the generation process, encouraging exploration of alternative strategic approaches.
At the execution level, diversity manifests through: training local control networks on different distribu-
tions of human data, capturing varying skill levels and play styles; introducing controlled stochasticity
into neural network outputs, creating natural variations in execution; parameterizing reward functions
to emphasize different execution characteristics, such as aggression, caution, or efficiency.
The hierarchical decomposition of our approach makes achieving behavioral diversity substantially more
tractable than in classical reinforcement learning systems. Rather than attempting to discover diverse
behaviors through environmental exploration – a computationally intensive process with limited guaran-
tees, we can explicitly engineer diversity through structural variations in the generated policies. This
approach provides game designers with unprecedented control over the distribution and characteristics of
AI behaviors, enabling the creation of rich, varied game experiences with minimal development overhead.
Multi-agent Collaboration: While our primary focus has been on single-agent scenarios, our framework
extends naturally to multi-agent collaboration contexts. We adapt our approach to collaborative settings
by drawing inspiration from the Centralized Training with Decentralized Execution (CTDE) paradigm
prevalent in multi-agent reinforcement learning. For multi-agent scenarios, we extend our DSL to
incorporate joint actions and states involving multiple agents. In this extended formalism, nodes can
specify coordinated behaviors such as "agents A and B move to flanking positions while agent C provides
covering fire." This higher-level representation captures the strategic coordination essential for effective
team play. Following the construction of this multi-agent DSL representation, we decompose it into
agent-specific behavior trees, enabling decentralized execution. Each agent receives an individualized
behavior tree derived from the joint strategy, tailored to its specific role within the coordinated plan. This
decomposition preserves the strategic coordination specified in the joint representation while enabling
autonomous execution by individual agents. The resulting multi-agent system exhibits coordinated
behaviors emerging from explicit strategic planning rather than implicit policy convergence, yielding
more interpretable and controllable collaborative dynamics than typically achieved through end-to-end
multi-agent reinforcement learning.

Work in Progress 16

Agents Play Thousands of 3D Video Games

Connections to Meta Chain-of-Thought: Recent work on Meta Chain-of-Thought (Meta-CoT) [30]
surveys techniques for enabling Large Language Models (LLMs) to perform complex reasoning, proposing
a framework to model the reasoning process as:

𝑝(a, z1, . . . , z𝑛|x) ∝
∫︁

𝑝(a, z1, . . . , z𝑛|z1, . . . , z𝑘,x)⏟ ⏞
Joint Answer+CoT

𝐾∏︁
𝑡=1

𝑝(z𝑡|z<𝑡,x)⏟ ⏞
Meta-CoT

𝑑z,

where x represents the input, a is the final answer, and z𝑖 are the intermediate reasoning steps (Chain-
of-Thought). The process x → z1 → . . . → z𝐾 is referred to as Meta-CoT, representing a higher-
level reasoning process about the reasoning steps themselves. This framework emphasizes the iterative
refinement of thought processes, a key aspect of System 2 reasoning.
Our methodology embodies a similar meta-reasoning paradigm but operates at a different level of
abstraction. Rather than using LLMs to map environment states directly to actions, our system employs
them to generate policy structures expressed in DSL. This distinction can be formalized as:

Policy: 𝜋 : 𝑆 → 𝐴

Meta-Policy: Π : Policy Description → 𝜋

In this formulation, the meta-policyΠ accepts a description of a policy as input and produces an executable
policy 𝜋 as output. This represents a meta-reasoning process where the LLM designs the policy structure
rather than directly controlling agent actions.
This approach positions LLMs as policy architects rather than direct controllers, leveraging their reasoning
capabilities for strategic design while delegating execution to more efficient specialized components. The
parallels with Meta-CoT suggest promising directions for further research, particularly in developing
more sophisticated meta-reasoning frameworks for policy generation and refinement.
Tool Uses and Function Calls: There are connections to tool uses [12, 13] and function calls, but our
proposed system offers distinct advantages. Tool uses enable language models to interact with external
tools to overcome inherent limitations in performing specialized tasks. While one might conceptualize
our proposed system as a form of tool use if neural network task nodes are viewed as tools, our approach
fundamentally differs in several key aspects. The primary distinction is that previous work positions LLMs
as actors interacting directly with the environment, whereas our system deploys LLMs as architects. In
our framework, LLMs do not process environment states as inputs to determine tool or function selection,
which enables our system to integrate seamlessly with real-time game engines. Importantly, all planning
and Domain-Specific Language (DSL) architecture is executed offline rather than online, resulting in
significant performance benefits for time-sensitive applications while maintaining the strategic advantages
of LLM-based planning.
Extensions to Other Applications: The structural principles underlying our approach extend naturally
beyond gaming to various other domains involving hierarchical control problems. The behavior tree DSL
abstraction we have developed provides a generalizable framework for complex decision-making across
diverse applications. Particularly promising extension domains include:

Work in Progress 17

Agents Play Thousands of 3D Video Games

• Embodied AI: Robotic systems face similar challenges in decomposing complex tasks into man-
ageable components while maintaining strategic coherence. Our approach offers a framework
for generating interpretable policies that combine high-level strategic planning with specialized
execution components tailored to specific robotic embodiments. An idea in the same principle has
been explored in a concurrent work Gemini Robotics [7].

• Autonomous Driving: Vehicle control involves complex decision hierarchies spanning strategic
route planning, tactical maneuver selection, and precise motion control. The DSL representation
can capture these hierarchical relationships while neural components handle execution under
varying environmental conditions.

Our approach offers two key advantages for these extended applications. First, the high-level policies
expressed in DSL exhibit strong transfer capabilities across different tasks and environments, enabling
knowledge reuse across similar problem domains. Second, the hierarchical decomposition inherent in
the behavior tree structure significantly reduces the complexity of training complete end-to-end systems,
facilitating better generalization across diverse embodiments and tasks. Furthermore, the interpretability
of the DSL representation addresses a critical requirement in many real-world applications, particularly
those subject to safety constraints or regulatory oversight. By making policy structures explicit and
readable, our approach facilitates analysis, verification, and targeted modification – essential capabilities
for deployment in sensitive domains.

6. Conclusions

In this paper, we have presented PORTAL, a novel framework for generating game-playing AI agents using
large language models to produce behavior trees expressed in domain-specific language. Our approach
fundamentally reconceptualizes AI agent development for video games by transforming complex decision-
making problems into language modeling tasks, enabling rapid policy generation and deployment across
thousands of diverse gaming environments.
These innovations collectively address critical limitations of previous approaches. Unlike traditional
reinforcement learning methods, our framework eliminates the need for massive simulation resources
and distributed training, reducing development time from weeks or months to hours or minutes. In
contrast to existing LLM-based approaches, our method avoids the latency issues associated with online
inference, enabling deployment in games with strict real-time requirements.
Our experimental results demonstrate the effectiveness of this approach across thousands of first-person
shooter games, showcasing significant improvements in development efficiency and policy generalization.
The instant development procedure enabled by our framework represents a paradigm shift in game AI
deployment, offering unprecedented capabilities for rapid iteration and adaptation.
PORTAL represents a significant step toward more efficient, adaptable, and capable artificial intelligence
for interactive systems. By bridging the gap between the strategic reasoning capabilities of language
models and the real-time performance requirements of dynamic environments, our approach opens new
possibilities for the next generation of decision-making AI and beyond.

Work in Progress 18

Agents Play Thousands of 3D Video Games

References

[1] Anthropic. Visible extended thinking in large language models. https://www.anthropic.com/
research/visible-extended-thinking, 2025. Accessed: March 2025.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chelsea Hunn, Imanol Luengo, Jack Rae,
Rachel , Bob McGrew, Tyna Eloundou Nekoul, Matthias Plappert, Dario Amodei, and Wojciech
Zaremba. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680,
2019.

[3] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An Introduction. CRC
Press, 2018.

[4] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, and ... (add other authors as needed
or use et al.). DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

[5] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561, 2018.

[6] Roberto Gallotta, Graham Todd, Marvin Zammit, Sam Earle, Antonios Liapis, Julian Togelius,
and Georgios N Yannakakis. Large language models and games: A survey and roadmap. IEEE
Transactions on Games, 2024.

[7] Gemini Robotics Team, Google DeepMind. Gemini Robotics: Bringing AI into the physical world.
arXiv preprint, 2025.

[8] Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Runji Lin, YuqiaoWu, JunWang, and Haifeng Zhang.
Large language models play StarCraft II: Benchmarks and a chain of summarization approach.
Advances in Neural Information Processing Systems, 37:133386–133442, 2024.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015. doi: 10.1038/nature14236.

[10] OpenAI, Josh Achiam, Sasha Adler, Sandhini Agarwal, Sandeep Ahmad, Ilge Akkaya, Alty Aleman,
David Almeida, Elie Altman, Alekh Alvarez, Haiming Anderson, Mira Anderson, Jyoti Aneja, Anthony
Anton, Amanda Askell, Haidar Aslam, Alex Azer, Karsen Bach, Yuntao Bai, Mark Balwit, Kendra
Banks, Kaylee Batmanghelich, Daniel Baxter, Pierre Beres, Stella Biderman, Nicholas Burnell,
Alessandro Achille, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[11] PrismarineJS. Mineflayer: A high-level JavaScript API for creating Minecraft bots. https://
github.com/PrismarineJS/mineflayer, 2025. Accessed: 2025-03-06.

Work in Progress 19

https://www.anthropic.com/research/visible-extended-thinking
https://www.anthropic.com/research/visible-extended-thinking
https://github.com/PrismarineJS/mineflayer
https://github.com/PrismarineJS/mineflayer

Agents Play Thousands of 3D Video Games

[12] Yujia Qin, Shengding Liang, Houqiang Ye, Ge Liu, Yi Zhang, Weizhu Han, Xin Jin, Lifan Yang,
Nianwen Xue, Jiawei Han, and Jie Tang. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. arXiv preprint arXiv:2307.16789, 2023.

[13] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use
tools. arXiv preprint arXiv:2302.04761, 2023.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[15] Claude E. Shannon. Programming a computer for playing chess. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950. doi: 10.1080/
14786445008521796.

[16] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[17] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016. doi: 10.1038/nature16961.

[18] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game
of Go without human knowledge. Nature, 550(7676):354–359, 2017. doi: 10.1038/nature24270.

[19] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan,
and Demis Hassabis. A general reinforcement learning algorithm that masters Chess, Shogi, and
Go through self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/science.aar6404.

[20] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

[21] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs, a framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[22] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

[23] Qwen Team. Qwen2.5: An innovative, generalist, and open large language model family. arXiv
preprint, June 2024. URL https://qwenlm.github.io/blog/qwen2.5/. Alibaba Cloud.

[24] Qwen Team. Qwen2.5-Coder: An enhanced large language model for code understanding and gener-
ation. arXiv preprint, June 2024. URL https://qwenlm.github.io/blog/qwen2.5-coder/.
Alibaba Cloud.

Work in Progress 20

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5-coder/

Agents Play Thousands of 3D Video Games

[25] Chen Feng Tsai, Xiaochen Zhou, Sierra S Liu, Jing Li, Mo Yu, and Hongyuan Mei. Can large
language models play text games well? Current state-of-the-art and open questions. arXiv preprint
arXiv:2304.02868, 2023.

[26] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Tom Eccles, Norman Casares, Thomas Budden,
Simon Osindero, Aliaksei Veliantsev, Johannes Agapiou, James Devlin, Yuval Tassa, Brendan Tracey,
Demis Hassabis, and Koray Kavukcuoglu. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019. doi: 10.1038/s41586-019-1724-z.

[27] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. VOYAGER: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2023.

[28] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan,
Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software Developers
as Generalist Agents, 2024.

[29] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain of Thought prompting elicits reasoning in Large Language Models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[30] Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, et al. Towards System 2 reasoning in LLMs:
Learning how to think with meta Chain-of-Thought. arXiv preprint arXiv:2501.04682, 2025.

[31] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2023.

[32] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang Wang,
Qiang Fu, Wei Yang, and Lanxiao Huang. Mastering complex control in MOBA games with deep
reinforcement learning. In AAAI, pages 6672–6679. AAAI Press, 2020.

Work in Progress 21

Agents Play Thousands of 3D Video Games

A. Prompt Template

We use a prompt template as in OpenHands [28] which is rendered by Jinja2 engine to enable flexible
prompt management. The template is extended with Markdowns from other folders and files to form a
concrete prompt for the LLM to process.

Task
You are a diligent AI programmer working on behavior trees design for game AI.
You use domain specific language (DSL) to behavior tree implementation.
Your goal is to implement the DSL given a specified tactic.

Game Scenario
{{instructions.scenarios.cs}}

Available Nodes
You are also given a collection of existing basic nodes in the game.
{{ instructions.actions.selector }}
{{ instructions.actions.sequence }}
{{ instructions.actions.condition }}
{{ instructions.actions.param }}
{{ instructions.actions.action }}

Tactics
{{ state.tactics }}

DSL Format
{{ instructions.format.dsl_syntax }}

Response
{{ instructions.format.dsl_nlu }}

{% if history.dsl_tree %}
History Format Errors
Here’s your last DSL implementation and its corresponding format problems, you should improve
upon it and fix the format problems.

{{ history.dsl_tree }}
{{ history.message }}
{% endif %}

Work in Progress 22

	Introduction
	Related Work
	Method
	Overview
	Domain-specific Language Representation
	Extensions Beyond Classic Behavior Trees
	An Agent-Environment Loop
	Chain-of-Thought for Tree Generation and Reflexion
	Sampling and Post-training
	A Policy Network to Schedule Policies

	Experiments
	Optimization for Game Metrics
	Vision-Language Models for Reflexion
	Playing Thousands of First-Person Shooter (FPS) Games
	Instant Development Procedure

	Discussions
	Conclusions
	Prompt Template

